曲面游泳与高斯曲率

Q2 Multidisciplinary
L. Solanilla, W. O. Clavijo, Yessica P Velasco
{"title":"曲面游泳与高斯曲率","authors":"L. Solanilla, W. O. Clavijo, Yessica P Velasco","doi":"10.11144/JAVERIANA.SC23-2.SICS","DOIUrl":null,"url":null,"abstract":"The Cartesian-Newtonian paradigm of mechanics establishes that, within an inertial frame, a body either remains at rest or moves uniformly on a line, unless a force acts externally upon it. This crucial assertion breaks down when the classical concepts of space, time and measurement reveal to be inadequate. If, for example, the space is non-flat, an effective translation might occur from rest in the absence of external applied force. In this paper we examine mathematically the motion of a small object or lizard on an arbitrary curved surface. Particularly, we allow the lizard’s shape to undergo a cyclic deformation due exclusively to internal forces, so that the total linear momentum is conserved. In addition to the fact that the deformation produces a swimming event, we prove –under fairly simplifying assumptions that such a translationis some what directly proportional to the Gauss curvature of the surface at the point where the lizardlies.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.11144/JAVERIANA.SC23-2.SICS","citationCount":"0","resultStr":"{\"title\":\"Swimming in Curved Surfaces and Gauss Curvature\",\"authors\":\"L. Solanilla, W. O. Clavijo, Yessica P Velasco\",\"doi\":\"10.11144/JAVERIANA.SC23-2.SICS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cartesian-Newtonian paradigm of mechanics establishes that, within an inertial frame, a body either remains at rest or moves uniformly on a line, unless a force acts externally upon it. This crucial assertion breaks down when the classical concepts of space, time and measurement reveal to be inadequate. If, for example, the space is non-flat, an effective translation might occur from rest in the absence of external applied force. In this paper we examine mathematically the motion of a small object or lizard on an arbitrary curved surface. Particularly, we allow the lizard’s shape to undergo a cyclic deformation due exclusively to internal forces, so that the total linear momentum is conserved. In addition to the fact that the deformation produces a swimming event, we prove –under fairly simplifying assumptions that such a translationis some what directly proportional to the Gauss curvature of the surface at the point where the lizardlies.\",\"PeriodicalId\":39200,\"journal\":{\"name\":\"Universitas Scientiarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.11144/JAVERIANA.SC23-2.SICS\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universitas Scientiarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/JAVERIANA.SC23-2.SICS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/JAVERIANA.SC23-2.SICS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

笛卡尔-牛顿力学范式规定,在惯性系内,物体要么保持静止,要么在直线上均匀移动,除非外力作用在物体上。当空间、时间和测量的经典概念被证明不充分时,这一关键论断就被打破了。例如,如果空间是非平面的,则在没有外力的情况下,可能会从静止状态发生有效平移。在本文中,我们用数学方法研究了一个小物体或蜥蜴在任意曲面上的运动。特别是,我们允许蜥蜴的形状完全由于内力而发生循环变形,这样总的线性动量就守恒了。除了变形产生游泳事件这一事实之外,我们还证明了——在相当简化的假设下,这种平移与蜥蜴所在点的表面的高斯曲率成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swimming in Curved Surfaces and Gauss Curvature
The Cartesian-Newtonian paradigm of mechanics establishes that, within an inertial frame, a body either remains at rest or moves uniformly on a line, unless a force acts externally upon it. This crucial assertion breaks down when the classical concepts of space, time and measurement reveal to be inadequate. If, for example, the space is non-flat, an effective translation might occur from rest in the absence of external applied force. In this paper we examine mathematically the motion of a small object or lizard on an arbitrary curved surface. Particularly, we allow the lizard’s shape to undergo a cyclic deformation due exclusively to internal forces, so that the total linear momentum is conserved. In addition to the fact that the deformation produces a swimming event, we prove –under fairly simplifying assumptions that such a translationis some what directly proportional to the Gauss curvature of the surface at the point where the lizardlies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Universitas Scientiarum
Universitas Scientiarum Multidisciplinary-Multidisciplinary
CiteScore
1.20
自引率
0.00%
发文量
9
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信