{"title":"通过协调分支具有跳跃的FKPP方程的波速","authors":"T. Rosati, Andr'as T'obi'as","doi":"10.1214/23-ejp958","DOIUrl":null,"url":null,"abstract":"We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed $ \\mathfrak{s}>0 $ given by $\\frac{\\mathfrak{s}^{2}}{2} = \\int_{[0, 1]}\\frac{ \\log{(1 + y)}}{y} \\mathfrak{R}( \\mathrm d y)$ where $ \\mathfrak{R} $ is the intensity of the impacts of the driving noise. Our arguments are based on upper and lower bounds via a quenched duality with a coordinated system of branching Brownian motions.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wave speed of an FKPP equation with jumps via coordinated branching\",\"authors\":\"T. Rosati, Andr'as T'obi'as\",\"doi\":\"10.1214/23-ejp958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed $ \\\\mathfrak{s}>0 $ given by $\\\\frac{\\\\mathfrak{s}^{2}}{2} = \\\\int_{[0, 1]}\\\\frac{ \\\\log{(1 + y)}}{y} \\\\mathfrak{R}( \\\\mathrm d y)$ where $ \\\\mathfrak{R} $ is the intensity of the impacts of the driving noise. Our arguments are based on upper and lower bounds via a quenched duality with a coordinated system of branching Brownian motions.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp958\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp958","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑由泊松随机测度驱动的具有非线性选择的Fisher KPP方程。我们证明了该方程允许由$\frac{\mathfrak{s}^{2}}{2}=\int_{[0,1]}\frac{\log{(1+y)}{y}\mathfrak{R}(\mathrm d y)$给出的唯一波速$\mathfrak{s}>0$,其中$\mathfrak{R}$是驾驶噪声影响的强度。我们的论点是基于上界和下界,通过具有分支布朗运动协调系统的猝灭对偶。
The wave speed of an FKPP equation with jumps via coordinated branching
We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed $ \mathfrak{s}>0 $ given by $\frac{\mathfrak{s}^{2}}{2} = \int_{[0, 1]}\frac{ \log{(1 + y)}}{y} \mathfrak{R}( \mathrm d y)$ where $ \mathfrak{R} $ is the intensity of the impacts of the driving noise. Our arguments are based on upper and lower bounds via a quenched duality with a coordinated system of branching Brownian motions.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.