球中的完全复超曲面以叶状结构出现

IF 1.3 1区 数学 Q1 MATHEMATICS
A. Alarcón
{"title":"球中的完全复超曲面以叶状结构出现","authors":"A. Alarcón","doi":"10.4310/jdg/1656005494","DOIUrl":null,"url":null,"abstract":"In this paper we prove that every smooth complete closed complex hypersurface in the open unit ball $\\mathbb{B}_n$ of $\\mathbb{C}^n$ $(n\\ge 2)$ is a level set of a noncritical holomorphic function on $\\mathbb{B}_n$ all of whose level sets are complete. This shows that $\\mathbb{B}_n$ admits a nonsingular holomorphic foliation by smooth complete closed complex hypersurfaces and, what is the main point, that every hypersurface in $\\mathbb{B}_n$ of this type can be embedded into such a foliation. We establish a more general result in which neither completeness nor smoothness of the given hypersurface is required. \nFurthermore, we obtain a similar result for complex submanifolds of arbitrary positive codimension and prove the existence of a nonsingular holomorphic submersion foliation of $\\mathbb{B}_n$ by smooth complete closed complex submanifolds of any pure codimension $q\\in\\{1,\\ldots,n-1\\}$.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Complete complex hypersurfaces in the ball come in foliations\",\"authors\":\"A. Alarcón\",\"doi\":\"10.4310/jdg/1656005494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that every smooth complete closed complex hypersurface in the open unit ball $\\\\mathbb{B}_n$ of $\\\\mathbb{C}^n$ $(n\\\\ge 2)$ is a level set of a noncritical holomorphic function on $\\\\mathbb{B}_n$ all of whose level sets are complete. This shows that $\\\\mathbb{B}_n$ admits a nonsingular holomorphic foliation by smooth complete closed complex hypersurfaces and, what is the main point, that every hypersurface in $\\\\mathbb{B}_n$ of this type can be embedded into such a foliation. We establish a more general result in which neither completeness nor smoothness of the given hypersurface is required. \\nFurthermore, we obtain a similar result for complex submanifolds of arbitrary positive codimension and prove the existence of a nonsingular holomorphic submersion foliation of $\\\\mathbb{B}_n$ by smooth complete closed complex submanifolds of any pure codimension $q\\\\in\\\\{1,\\\\ldots,n-1\\\\}$.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1656005494\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1656005494","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

证明了$\mathbb{C}^n$ $(n\ge 2)$的开单位球$\mathbb{B}_n$上的每一个光滑完备闭超曲面$\mathbb{B}_n$是$\mathbb{B}_n$上的一个非临界全纯函数的水平集,其水平集都是完备的。这证明了$\mathbb{B}_n$允许光滑完全闭合复超曲面的非奇异全纯叶化,并且,重点是,$\mathbb{B}_n$中该类的每一个超曲面都可以嵌入到这样的叶化中。我们建立了一个更一般的结果,其中既不要求给定超曲面的完备性,也不要求其光滑性。进一步,我们得到了任意正余维复数子流形的类似结果,并证明了任意纯余维$q\in\{1,\ldots,n-1\}$中的光滑完全闭复数子流形$\mathbb{B}_n$的非奇异全纯淹没叶的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete complex hypersurfaces in the ball come in foliations
In this paper we prove that every smooth complete closed complex hypersurface in the open unit ball $\mathbb{B}_n$ of $\mathbb{C}^n$ $(n\ge 2)$ is a level set of a noncritical holomorphic function on $\mathbb{B}_n$ all of whose level sets are complete. This shows that $\mathbb{B}_n$ admits a nonsingular holomorphic foliation by smooth complete closed complex hypersurfaces and, what is the main point, that every hypersurface in $\mathbb{B}_n$ of this type can be embedded into such a foliation. We establish a more general result in which neither completeness nor smoothness of the given hypersurface is required. Furthermore, we obtain a similar result for complex submanifolds of arbitrary positive codimension and prove the existence of a nonsingular holomorphic submersion foliation of $\mathbb{B}_n$ by smooth complete closed complex submanifolds of any pure codimension $q\in\{1,\ldots,n-1\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信