基于SVM的SSO智能算法在情绪分析中的应用

O. Y. Abdulhammed, P. J. Karim
{"title":"基于SVM的SSO智能算法在情绪分析中的应用","authors":"O. Y. Abdulhammed, P. J. Karim","doi":"10.24271/psr.2022.160801","DOIUrl":null,"url":null,"abstract":"Facebook and Twitter, as two known social media become popular sources of big data that give the right to people to share and express their feedback about products, services, politicians, events, and every aspect of life in the form of short texts. The classification of sentiments could be automated through machine learning and enhanced using appropriate feature extraction methods. In this work, we collected the most recent tweets about (Biden, Benzema, Apple, and NASA) using Twitter-API and assigned sentiment scores using a rule-based lexicon approach; after pre-processing stage, each dataset is divided into 80% as a training set, and rest 20% as testing set. After that, the Distributed bag of words, Distributed memory mean, Distributed Memory Concatenation, and Term Frequency-Inverse Document Frequency models are used for feature extraction from pre-processed tweets. Depending on the Shark smell optimizer algorithm, the SVM technique was used to classify the extracted features. The SSO was used to tune and select the best value for SVM parameters to optimize the overall model performance. The results display that these optimizers have an essential impact on increasing the model accuracy. After optimization, the model accuracy reached 92.12%, while the highest accuracy without optimization was 88.69% for various feature extraction methods.","PeriodicalId":33835,"journal":{"name":"Passer Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis using SVM-based SSO Intelligence Algorithm\",\"authors\":\"O. Y. Abdulhammed, P. J. Karim\",\"doi\":\"10.24271/psr.2022.160801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facebook and Twitter, as two known social media become popular sources of big data that give the right to people to share and express their feedback about products, services, politicians, events, and every aspect of life in the form of short texts. The classification of sentiments could be automated through machine learning and enhanced using appropriate feature extraction methods. In this work, we collected the most recent tweets about (Biden, Benzema, Apple, and NASA) using Twitter-API and assigned sentiment scores using a rule-based lexicon approach; after pre-processing stage, each dataset is divided into 80% as a training set, and rest 20% as testing set. After that, the Distributed bag of words, Distributed memory mean, Distributed Memory Concatenation, and Term Frequency-Inverse Document Frequency models are used for feature extraction from pre-processed tweets. Depending on the Shark smell optimizer algorithm, the SVM technique was used to classify the extracted features. The SSO was used to tune and select the best value for SVM parameters to optimize the overall model performance. The results display that these optimizers have an essential impact on increasing the model accuracy. After optimization, the model accuracy reached 92.12%, while the highest accuracy without optimization was 88.69% for various feature extraction methods.\",\"PeriodicalId\":33835,\"journal\":{\"name\":\"Passer Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Passer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24271/psr.2022.160801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Passer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24271/psr.2022.160801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脸书和推特这两个众所周知的社交媒体成为了流行的大数据来源,人们有权以短文本的形式分享和表达他们对产品、服务、政治家、事件和生活方方面面的反馈。情绪的分类可以通过机器学习实现自动化,并使用适当的特征提取方法进行增强。在这项工作中,我们使用Twitter-API收集了关于(拜登、本泽马、苹果和美国国家航空航天局)的最新推文,并使用基于规则的词典方法分配情感得分;经过预处理阶段,每个数据集被分成80%作为训练集,其余20%作为测试集。之后,使用分布式单词袋、分布式内存均值、分布式内存连接和术语频率逆文档频率模型从预处理的推文中提取特征。根据Shark气味优化器算法,使用SVM技术对提取的特征进行分类。SSO用于调整和选择SVM参数的最佳值,以优化整体模型性能。结果表明,这些优化器对提高模型精度具有重要影响。优化后的模型准确率达到92.12%,而各种特征提取方法在未优化的情况下的最高准确率为88.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis using SVM-based SSO Intelligence Algorithm
Facebook and Twitter, as two known social media become popular sources of big data that give the right to people to share and express their feedback about products, services, politicians, events, and every aspect of life in the form of short texts. The classification of sentiments could be automated through machine learning and enhanced using appropriate feature extraction methods. In this work, we collected the most recent tweets about (Biden, Benzema, Apple, and NASA) using Twitter-API and assigned sentiment scores using a rule-based lexicon approach; after pre-processing stage, each dataset is divided into 80% as a training set, and rest 20% as testing set. After that, the Distributed bag of words, Distributed memory mean, Distributed Memory Concatenation, and Term Frequency-Inverse Document Frequency models are used for feature extraction from pre-processed tweets. Depending on the Shark smell optimizer algorithm, the SVM technique was used to classify the extracted features. The SSO was used to tune and select the best value for SVM parameters to optimize the overall model performance. The results display that these optimizers have an essential impact on increasing the model accuracy. After optimization, the model accuracy reached 92.12%, while the highest accuracy without optimization was 88.69% for various feature extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
23
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信