{"title":"复合材料在超疏水表面的动力学研究:液滴大小和形状的影响","authors":"Jaeung Kim, S. Yun","doi":"10.3365/kjmm.2023.61.5.371","DOIUrl":null,"url":null,"abstract":"Compound materials have two or more unmixable parts that retain a shared surface with one another for engineering purposes. Such compound materials, like the Janus or core–shell configurations, create opportunities for relevant applications because they offer diverse combinations of complex impinging materials and complex surfaces. However, previous studies have only assumed spherical configurations, or focused on the bouncing dynamics, without considering the effect of the material size. The current work numerically studies the dynamic characteristics of Janus materials with ellipsoidal shapes for various impact speeds and viscosity ratios, to analyze the effect of the size and shape of the material on bouncing and separation behavior. The threshold Weber numbers at which separation starts after the collision are investigated as a function of the droplet size, ellipticity, and viscosity ratio. In addition, a regime map of the separation efficiency of the Janus droplets is established under various viscosity ratios and Weber numbers to investigate the effects of droplet shape on the asymmetric bouncing and separation behavior. It is found that the separation efficiency and mechanism of two prolate spheroids are different from each other at the same ellipticity. This study will provide an efficient strategy to control the bouncing of compound materials in applications, such as drug delivery, liquid purification, and bio- or multi-material printing.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Dynamics of Compound Materials on Superhydrophobic Surfaces: Effects of Droplet’s Size and Shape\",\"authors\":\"Jaeung Kim, S. Yun\",\"doi\":\"10.3365/kjmm.2023.61.5.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compound materials have two or more unmixable parts that retain a shared surface with one another for engineering purposes. Such compound materials, like the Janus or core–shell configurations, create opportunities for relevant applications because they offer diverse combinations of complex impinging materials and complex surfaces. However, previous studies have only assumed spherical configurations, or focused on the bouncing dynamics, without considering the effect of the material size. The current work numerically studies the dynamic characteristics of Janus materials with ellipsoidal shapes for various impact speeds and viscosity ratios, to analyze the effect of the size and shape of the material on bouncing and separation behavior. The threshold Weber numbers at which separation starts after the collision are investigated as a function of the droplet size, ellipticity, and viscosity ratio. In addition, a regime map of the separation efficiency of the Janus droplets is established under various viscosity ratios and Weber numbers to investigate the effects of droplet shape on the asymmetric bouncing and separation behavior. It is found that the separation efficiency and mechanism of two prolate spheroids are different from each other at the same ellipticity. This study will provide an efficient strategy to control the bouncing of compound materials in applications, such as drug delivery, liquid purification, and bio- or multi-material printing.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2023.61.5.371\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.5.371","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Study on the Dynamics of Compound Materials on Superhydrophobic Surfaces: Effects of Droplet’s Size and Shape
Compound materials have two or more unmixable parts that retain a shared surface with one another for engineering purposes. Such compound materials, like the Janus or core–shell configurations, create opportunities for relevant applications because they offer diverse combinations of complex impinging materials and complex surfaces. However, previous studies have only assumed spherical configurations, or focused on the bouncing dynamics, without considering the effect of the material size. The current work numerically studies the dynamic characteristics of Janus materials with ellipsoidal shapes for various impact speeds and viscosity ratios, to analyze the effect of the size and shape of the material on bouncing and separation behavior. The threshold Weber numbers at which separation starts after the collision are investigated as a function of the droplet size, ellipticity, and viscosity ratio. In addition, a regime map of the separation efficiency of the Janus droplets is established under various viscosity ratios and Weber numbers to investigate the effects of droplet shape on the asymmetric bouncing and separation behavior. It is found that the separation efficiency and mechanism of two prolate spheroids are different from each other at the same ellipticity. This study will provide an efficient strategy to control the bouncing of compound materials in applications, such as drug delivery, liquid purification, and bio- or multi-material printing.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.