M. Ballesteros, Gerardo Franco C'ordova, I. Naumkin, H. Schulz-Baldes
{"title":"矩阵势具有一阶矩的直线上离散薛定谔算子的Levinson定理","authors":"M. Ballesteros, Gerardo Franco C'ordova, I. Naumkin, H. Schulz-Baldes","doi":"10.1142/s0219199723500177","DOIUrl":null,"url":null,"abstract":"This paper proves new results on spectral and scattering theory for matrix-valued Schr\\\"odinger operators on the discrete line with non-compactly supported perturbations whose first moments are assumed to exist. In particular, a Levinson theorem is proved, in which a relation between scattering data and spectral properties (bound and half bound states) of the corresponding Hamiltonians is derived. The proof is based on stationary scattering theory with prominent use of Jost solutions at complex energies that are controlled by Volterra-type integral equations.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levinson theorem for discrete Schrodinger operators on the line with matrix potentials having a first moment\",\"authors\":\"M. Ballesteros, Gerardo Franco C'ordova, I. Naumkin, H. Schulz-Baldes\",\"doi\":\"10.1142/s0219199723500177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proves new results on spectral and scattering theory for matrix-valued Schr\\\\\\\"odinger operators on the discrete line with non-compactly supported perturbations whose first moments are assumed to exist. In particular, a Levinson theorem is proved, in which a relation between scattering data and spectral properties (bound and half bound states) of the corresponding Hamiltonians is derived. The proof is based on stationary scattering theory with prominent use of Jost solutions at complex energies that are controlled by Volterra-type integral equations.\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500177\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Levinson theorem for discrete Schrodinger operators on the line with matrix potentials having a first moment
This paper proves new results on spectral and scattering theory for matrix-valued Schr\"odinger operators on the discrete line with non-compactly supported perturbations whose first moments are assumed to exist. In particular, a Levinson theorem is proved, in which a relation between scattering data and spectral properties (bound and half bound states) of the corresponding Hamiltonians is derived. The proof is based on stationary scattering theory with prominent use of Jost solutions at complex energies that are controlled by Volterra-type integral equations.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.