具有最大可能数目的帕斯卡三角形的布尔类比

IF 0.3 Q4 MATHEMATICS, APPLIED
F. M. Malyshev
{"title":"具有最大可能数目的帕斯卡三角形的布尔类比","authors":"F. M. Malyshev","doi":"10.1515/dma-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract The aim of the paper is to find the maximal possible number ξ of units in Boolean triangular array Ts formed by s(s+1)2 $\\begin{array}{} \\displaystyle \\frac{s(s+1)}{2} \\end{array}$ elements of the field GF(2) defined by the top row of s elements. Each element of each row except the top one is the sum (as in the Pascal’s triangle) of two elements of the above row. It is proved that ξ ⩽ ⌈ s(s+1)3 $\\begin{array}{} \\displaystyle \\frac{s(s+1)}{3} \\end{array}$⌉ and this value is attained only on triangles having the upper row as the Fibonacci series mod 2.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"31 1","pages":"319 - 325"},"PeriodicalIF":0.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean analogues of the Pascal triangle with maximal possible number of ones\",\"authors\":\"F. M. Malyshev\",\"doi\":\"10.1515/dma-2021-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of the paper is to find the maximal possible number ξ of units in Boolean triangular array Ts formed by s(s+1)2 $\\\\begin{array}{} \\\\displaystyle \\\\frac{s(s+1)}{2} \\\\end{array}$ elements of the field GF(2) defined by the top row of s elements. Each element of each row except the top one is the sum (as in the Pascal’s triangle) of two elements of the above row. It is proved that ξ ⩽ ⌈ s(s+1)3 $\\\\begin{array}{} \\\\displaystyle \\\\frac{s(s+1)}{3} \\\\end{array}$⌉ and this value is attained only on triangles having the upper row as the Fibonacci series mod 2.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"31 1\",\"pages\":\"319 - 325\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2021-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是在由s元素的顶行定义的域GF(2)的s(s+1)2$\begin{array}{}\displaystyle\frac{s(s+1)}{2}\end{array}$元素形成的布尔三角数组Ts中找到单元的最大可能数ξ。除了最上面的一行之外,每行的每个元素都是上面一行的两个元素的和(如Pascal三角形)。证明了ξ⩽s(s+1)3$\begin{array}{}\displaystyle\frac{s(s+1)}{3}\end{array}$,并且该值仅在具有作为斐波那契级数mod 2的上排的三角形上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boolean analogues of the Pascal triangle with maximal possible number of ones
Abstract The aim of the paper is to find the maximal possible number ξ of units in Boolean triangular array Ts formed by s(s+1)2 $\begin{array}{} \displaystyle \frac{s(s+1)}{2} \end{array}$ elements of the field GF(2) defined by the top row of s elements. Each element of each row except the top one is the sum (as in the Pascal’s triangle) of two elements of the above row. It is proved that ξ ⩽ ⌈ s(s+1)3 $\begin{array}{} \displaystyle \frac{s(s+1)}{3} \end{array}$⌉ and this value is attained only on triangles having the upper row as the Fibonacci series mod 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信