A. Lozynskyi, I. Yushyn, Y. Konechnyi, O. Roman, O. V. Matiykiv, O. Smaliukh, L. Mosula, S. Polovkovych, R. Lesyk
{"title":"1-[2-氨基-4-甲基噻唑-5-基]-3-芳基丙烯的合成及生物活性评价","authors":"A. Lozynskyi, I. Yushyn, Y. Konechnyi, O. Roman, O. V. Matiykiv, O. Smaliukh, L. Mosula, S. Polovkovych, R. Lesyk","doi":"10.7124/bc.000a64","DOIUrl":null,"url":null,"abstract":"Aim. To accomplish the synthesis and screening of anticancer and antimicrobial activities of 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones 2-10. Methods. The in vitro anticancer activity of compounds 4, 6, 8-10 has been established by DTP(Developmental Therapeutics Program) of the National Cancer Institute. The antibacterial and antifungal activities of synthesized thiazole-based derivatives were evaluated in vitro with the agar diffusion and broth microdilution methods to wards Gram-positive, Gram-negative bacteria and yeasts. For the synthesized compounds, the in silico drug-likeness screening using SwissADME online server is reported. Results. The novel 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones were synthesized from 1-[2-amino-4-methylthiazol-5-yl]ethanones and various aromatic aldehydes in the Claisen–Schmidt condensation. The synthesized compound 9 was moderately active against the leukemia CCRF-CEM and HL-60(TB), renal cancer UO-31 and breast cancer MCF7 cell lines. The antimicrobial screening led to identification of the active compound 10 against Staphylococcus aureus , Pseudomonas aeruginosa , and Candida albicans . Conclusions. The results obtained herein provide a platform for structure-based optimization of these newly identified thiazole-based compounds for the anticancer and antibacterial drug design.","PeriodicalId":39444,"journal":{"name":"Biopolymers and Cell","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and evaluation of biological activity of 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones\",\"authors\":\"A. Lozynskyi, I. Yushyn, Y. Konechnyi, O. Roman, O. V. Matiykiv, O. Smaliukh, L. Mosula, S. Polovkovych, R. Lesyk\",\"doi\":\"10.7124/bc.000a64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim. To accomplish the synthesis and screening of anticancer and antimicrobial activities of 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones 2-10. Methods. The in vitro anticancer activity of compounds 4, 6, 8-10 has been established by DTP(Developmental Therapeutics Program) of the National Cancer Institute. The antibacterial and antifungal activities of synthesized thiazole-based derivatives were evaluated in vitro with the agar diffusion and broth microdilution methods to wards Gram-positive, Gram-negative bacteria and yeasts. For the synthesized compounds, the in silico drug-likeness screening using SwissADME online server is reported. Results. The novel 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones were synthesized from 1-[2-amino-4-methylthiazol-5-yl]ethanones and various aromatic aldehydes in the Claisen–Schmidt condensation. The synthesized compound 9 was moderately active against the leukemia CCRF-CEM and HL-60(TB), renal cancer UO-31 and breast cancer MCF7 cell lines. The antimicrobial screening led to identification of the active compound 10 against Staphylococcus aureus , Pseudomonas aeruginosa , and Candida albicans . Conclusions. The results obtained herein provide a platform for structure-based optimization of these newly identified thiazole-based compounds for the anticancer and antibacterial drug design.\",\"PeriodicalId\":39444,\"journal\":{\"name\":\"Biopolymers and Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers and Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7124/bc.000a64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers and Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7124/bc.000a64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Synthesis and evaluation of biological activity of 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones
Aim. To accomplish the synthesis and screening of anticancer and antimicrobial activities of 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones 2-10. Methods. The in vitro anticancer activity of compounds 4, 6, 8-10 has been established by DTP(Developmental Therapeutics Program) of the National Cancer Institute. The antibacterial and antifungal activities of synthesized thiazole-based derivatives were evaluated in vitro with the agar diffusion and broth microdilution methods to wards Gram-positive, Gram-negative bacteria and yeasts. For the synthesized compounds, the in silico drug-likeness screening using SwissADME online server is reported. Results. The novel 1-[2-amino-4-methylthiazol-5-yl]-3-arylpropenones were synthesized from 1-[2-amino-4-methylthiazol-5-yl]ethanones and various aromatic aldehydes in the Claisen–Schmidt condensation. The synthesized compound 9 was moderately active against the leukemia CCRF-CEM and HL-60(TB), renal cancer UO-31 and breast cancer MCF7 cell lines. The antimicrobial screening led to identification of the active compound 10 against Staphylococcus aureus , Pseudomonas aeruginosa , and Candida albicans . Conclusions. The results obtained herein provide a platform for structure-based optimization of these newly identified thiazole-based compounds for the anticancer and antibacterial drug design.
Biopolymers and CellBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.10
自引率
0.00%
发文量
9
期刊介绍:
“Biopolymer and cell” is published since 1985 at the Institute of Molecular Biology and Genetics NAS of Ukraine under the supervision of the National Academy of Sciences of Ukraine. Our journal covers a wide scope of problems related to molecular biology and genetics including structural and functional genomics, transcriptomics, proteomics, bioinformatics, biomedicine, molecular enzymology, molecular virology and immunology, theoretical bases of biotechnology, physics and physical chemistry of proteins and nucleic acids and bioorganic chemistry.