{"title":"基底的结构如何调节平移滑移的发展?诺夫哥罗德衰落时期(苏台德中部)沃多维奇滑坡的一个例子","authors":"A. Kowalski","doi":"10.7306/2022.26","DOIUrl":null,"url":null,"abstract":"In this contribution the author presents the results of geological and geomorphological field mapping and structural analyses conducted within the area of a newly recognized landslide situated near Włodowice, in the southern part of the Nowa Ruda Basin (Central Sudetes, SW Poland). The landform is located within the eastern limb of the Intra-Sudetic Synclinorium (Nowa Ruda Monocline) built of Upper Carboniferous to Lower Permian (Rotliegend) sedimentary rocks. Geomorphological characteristics of the landslide are presented, but the greatest attention is paid to the way of transformation of individual structural elements of basement rocks (bedding surfaces, sets of fractures) by mass movements. The study allows recognition and interpretation of landslide type according to failure mechanism – the analysed form represents a typical translational landslide with a flat, structural slip surface related to bedding planes. A model of the development of a translational landslide under specific geological conditions (monoclinal structure built of different lithological varieties of sedimentary rocks with different rheological properties) is presented. Due to the partial exposure of the slip surface in the upper and lower parts of the landslide, the form should be considered unique among the previously identified landslides in the Sudetes Mts. During this study the author repeatedly confirms the usefulness of analyses of LiDAR models in landslide investigations.","PeriodicalId":35787,"journal":{"name":"Przeglad Geologiczny","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"W jaki sposób struktura podłoża warunkuje rozwój osuwiska translacyjnego? Przykład osuwiska we Włodowicach w Obniżeniu Noworudzkim (Sudety Środkowe)\",\"authors\":\"A. Kowalski\",\"doi\":\"10.7306/2022.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution the author presents the results of geological and geomorphological field mapping and structural analyses conducted within the area of a newly recognized landslide situated near Włodowice, in the southern part of the Nowa Ruda Basin (Central Sudetes, SW Poland). The landform is located within the eastern limb of the Intra-Sudetic Synclinorium (Nowa Ruda Monocline) built of Upper Carboniferous to Lower Permian (Rotliegend) sedimentary rocks. Geomorphological characteristics of the landslide are presented, but the greatest attention is paid to the way of transformation of individual structural elements of basement rocks (bedding surfaces, sets of fractures) by mass movements. The study allows recognition and interpretation of landslide type according to failure mechanism – the analysed form represents a typical translational landslide with a flat, structural slip surface related to bedding planes. A model of the development of a translational landslide under specific geological conditions (monoclinal structure built of different lithological varieties of sedimentary rocks with different rheological properties) is presented. Due to the partial exposure of the slip surface in the upper and lower parts of the landslide, the form should be considered unique among the previously identified landslides in the Sudetes Mts. During this study the author repeatedly confirms the usefulness of analyses of LiDAR models in landslide investigations.\",\"PeriodicalId\":35787,\"journal\":{\"name\":\"Przeglad Geologiczny\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przeglad Geologiczny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7306/2022.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przeglad Geologiczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7306/2022.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
W jaki sposób struktura podłoża warunkuje rozwój osuwiska translacyjnego? Przykład osuwiska we Włodowicach w Obniżeniu Noworudzkim (Sudety Środkowe)
In this contribution the author presents the results of geological and geomorphological field mapping and structural analyses conducted within the area of a newly recognized landslide situated near Włodowice, in the southern part of the Nowa Ruda Basin (Central Sudetes, SW Poland). The landform is located within the eastern limb of the Intra-Sudetic Synclinorium (Nowa Ruda Monocline) built of Upper Carboniferous to Lower Permian (Rotliegend) sedimentary rocks. Geomorphological characteristics of the landslide are presented, but the greatest attention is paid to the way of transformation of individual structural elements of basement rocks (bedding surfaces, sets of fractures) by mass movements. The study allows recognition and interpretation of landslide type according to failure mechanism – the analysed form represents a typical translational landslide with a flat, structural slip surface related to bedding planes. A model of the development of a translational landslide under specific geological conditions (monoclinal structure built of different lithological varieties of sedimentary rocks with different rheological properties) is presented. Due to the partial exposure of the slip surface in the upper and lower parts of the landslide, the form should be considered unique among the previously identified landslides in the Sudetes Mts. During this study the author repeatedly confirms the usefulness of analyses of LiDAR models in landslide investigations.