Chunjie Zhou, Pengfei Dai, Zhenxing Zhang, Tong Liu
{"title":"智能制造中基于区间的无序事件处理","authors":"Chunjie Zhou, Pengfei Dai, Zhenxing Zhang, Tong Liu","doi":"10.4236/JILSA.2018.102002","DOIUrl":null,"url":null,"abstract":"Estimating the cycle time of each job over event streams in intelligent manufacturing is critical. These streams include many long-lasting events which have certain durations. The temporal relationships among those interval-based events are often complex. Meanwhile, network latencies and machine failures in intelligent manufacturing may cause events to be out-of-order. This topic has rarely been discussed because most existing methods do not consider both interval-based and out-of-order events. In this work, we analyze the preliminaries of event temporal semantics. A tree-plan model of interval-based out-of-order events is proposed. A hybrid solution is correspondingly introduced. Extensive experimental studies demonstrate the efficiency of our approach.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"10 1","pages":"21-35"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval-Based Out-of-Order Event Processing in Intelligent Manufacturing\",\"authors\":\"Chunjie Zhou, Pengfei Dai, Zhenxing Zhang, Tong Liu\",\"doi\":\"10.4236/JILSA.2018.102002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the cycle time of each job over event streams in intelligent manufacturing is critical. These streams include many long-lasting events which have certain durations. The temporal relationships among those interval-based events are often complex. Meanwhile, network latencies and machine failures in intelligent manufacturing may cause events to be out-of-order. This topic has rarely been discussed because most existing methods do not consider both interval-based and out-of-order events. In this work, we analyze the preliminaries of event temporal semantics. A tree-plan model of interval-based out-of-order events is proposed. A hybrid solution is correspondingly introduced. Extensive experimental studies demonstrate the efficiency of our approach.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"10 1\",\"pages\":\"21-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2018.102002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2018.102002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interval-Based Out-of-Order Event Processing in Intelligent Manufacturing
Estimating the cycle time of each job over event streams in intelligent manufacturing is critical. These streams include many long-lasting events which have certain durations. The temporal relationships among those interval-based events are often complex. Meanwhile, network latencies and machine failures in intelligent manufacturing may cause events to be out-of-order. This topic has rarely been discussed because most existing methods do not consider both interval-based and out-of-order events. In this work, we analyze the preliminaries of event temporal semantics. A tree-plan model of interval-based out-of-order events is proposed. A hybrid solution is correspondingly introduced. Extensive experimental studies demonstrate the efficiency of our approach.