求解区间值三角模糊弧权最短路径问题的Mehar方法

Q3 Computer Science
T. K. Bhatia, Amit Kumar, M. Sharma, S. Appadoo
{"title":"求解区间值三角模糊弧权最短路径问题的Mehar方法","authors":"T. K. Bhatia, Amit Kumar, M. Sharma, S. Appadoo","doi":"10.4018/ijfsa.313428","DOIUrl":null,"url":null,"abstract":"In this paper, an alternative approach (named Mehar approach) is proposed for solving interval-valued triangular fuzzy shortest path problems. Also, it is shown that less computational efforts are required to apply the proposed Mehar approach as compared to Ebrahimnejad et al.'s method. Furthermore, to illustrate the proposed Mehar approach, the interval-valued triangular fuzzy shortest path problem, considered by Ebrahimnejad et al. to illustrate their proposed method, is solved by the proposed Mehar approach.","PeriodicalId":38154,"journal":{"name":"International Journal of Fuzzy System Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mehar Approach for Solving Shortest Path Problems With Interval-Valued Triangular Fuzzy Arc Weights\",\"authors\":\"T. K. Bhatia, Amit Kumar, M. Sharma, S. Appadoo\",\"doi\":\"10.4018/ijfsa.313428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an alternative approach (named Mehar approach) is proposed for solving interval-valued triangular fuzzy shortest path problems. Also, it is shown that less computational efforts are required to apply the proposed Mehar approach as compared to Ebrahimnejad et al.'s method. Furthermore, to illustrate the proposed Mehar approach, the interval-valued triangular fuzzy shortest path problem, considered by Ebrahimnejad et al. to illustrate their proposed method, is solved by the proposed Mehar approach.\",\"PeriodicalId\":38154,\"journal\":{\"name\":\"International Journal of Fuzzy System Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy System Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.313428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy System Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.313428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解区间值三角模糊最短路径问题的替代方法(Mehar方法)。此外,与Ebrahimnejad等人的方法相比,应用所提出的Mehar方法所需的计算工作量更少。此外,为了说明所提出的Mehar方法,Ebrahimnejad等人为了说明他们提出的方法而考虑的区间值三角模糊最短路径问题通过所提出的Mehar方法得到了解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mehar Approach for Solving Shortest Path Problems With Interval-Valued Triangular Fuzzy Arc Weights
In this paper, an alternative approach (named Mehar approach) is proposed for solving interval-valued triangular fuzzy shortest path problems. Also, it is shown that less computational efforts are required to apply the proposed Mehar approach as compared to Ebrahimnejad et al.'s method. Furthermore, to illustrate the proposed Mehar approach, the interval-valued triangular fuzzy shortest path problem, considered by Ebrahimnejad et al. to illustrate their proposed method, is solved by the proposed Mehar approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy System Applications
International Journal of Fuzzy System Applications Computer Science-Computer Science (all)
CiteScore
2.40
自引率
0.00%
发文量
65
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信