基于线性Euler方程的非均匀下洗流场中转子噪声传播特性的数值研究

IF 1.2 4区 工程技术 Q3 ACOUSTICS
T. Yang, Xi Chen, Qi-jun Zhao, Guo-qing Zhao
{"title":"基于线性Euler方程的非均匀下洗流场中转子噪声传播特性的数值研究","authors":"T. Yang, Xi Chen, Qi-jun Zhao, Guo-qing Zhao","doi":"10.1177/1475472X221136883","DOIUrl":null,"url":null,"abstract":"To study the influence of non-uniform flowfield on the propagation characteristics of helicopter rotor noise, a Hybrid Computational Aeroacoustics (HCAA) method is developed. The acoustic source region is simulated by Computational Fluid Dynamics (CFD) technique with the Unsteady Reynolds Averaged Navier-Stokes equations (URANS) as the governing equations. Acoustic near-field is simulated by Computational Aeroacoustics (CAA) technique with the Linearized Euler Equations (LEE) as the governing equations, and the numerical discretization of the LEE is accomplished by Runge-Kutta Discontinuous Galerkin (RKDG) method. A novel acoustic source extraction method based on pressure and pressure gradient is proposed to accomplish the one-way CFD-CAA weak coupling. The HCAA method is validated through comparisons with noise experimental data of the UH-1H model rotor and the BO-105 model rotor. Based on the proposed HCAA method, the convection and refraction effects of rotor noise under different collective pitch angles are analyzed. The results show that the distortion effect of the rotor noise is most affected by the non-uniformly distributed downwash velocity field, resulting in an increment of acoustic energy below the rotor plane. The effect of non-uniformly distributed downwash velocity on noise propagation increases with the increase of the collective pitch angle. For the UH-1H model rotor, the maximum change of the sound pressure level is 0.8 dB (about 10% change of the effective sound pressure).","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical study on the noise propagation characteristics of rotor in non-uniform downwash flowfield Based on Linearized Euler Equations\",\"authors\":\"T. Yang, Xi Chen, Qi-jun Zhao, Guo-qing Zhao\",\"doi\":\"10.1177/1475472X221136883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the influence of non-uniform flowfield on the propagation characteristics of helicopter rotor noise, a Hybrid Computational Aeroacoustics (HCAA) method is developed. The acoustic source region is simulated by Computational Fluid Dynamics (CFD) technique with the Unsteady Reynolds Averaged Navier-Stokes equations (URANS) as the governing equations. Acoustic near-field is simulated by Computational Aeroacoustics (CAA) technique with the Linearized Euler Equations (LEE) as the governing equations, and the numerical discretization of the LEE is accomplished by Runge-Kutta Discontinuous Galerkin (RKDG) method. A novel acoustic source extraction method based on pressure and pressure gradient is proposed to accomplish the one-way CFD-CAA weak coupling. The HCAA method is validated through comparisons with noise experimental data of the UH-1H model rotor and the BO-105 model rotor. Based on the proposed HCAA method, the convection and refraction effects of rotor noise under different collective pitch angles are analyzed. The results show that the distortion effect of the rotor noise is most affected by the non-uniformly distributed downwash velocity field, resulting in an increment of acoustic energy below the rotor plane. The effect of non-uniformly distributed downwash velocity on noise propagation increases with the increase of the collective pitch angle. For the UH-1H model rotor, the maximum change of the sound pressure level is 0.8 dB (about 10% change of the effective sound pressure).\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X221136883\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221136883","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

摘要

为了研究非均匀流场对直升机旋翼噪声传播特性的影响,提出了一种混合计算气动声学方法。以非定常雷诺平均Navier-Stokes方程为控制方程,采用计算流体动力学(CFD)技术对声源区进行了模拟。以线性化欧拉方程(LEE)为控制方程,采用计算气动声学(CAA)技术对声近场进行了模拟,并采用龙格-库塔间断伽辽金(RKDG)方法对LEE进行了数值离散。为了实现单向CFD-CAA弱耦合,提出了一种新的基于压力和压力梯度的声源提取方法。通过与UH-1H型转子和BO-105型转子的噪声实验数据的比较,验证了HCAA方法的有效性。基于所提出的HCAA方法,分析了不同桨距角下转子噪声的对流和折射效应。结果表明,非均匀分布的下洗速度场对转子噪声的畸变影响最大,导致转子平面以下的声能增加。非均匀分布的下洗速度对噪声传播的影响随着总桨距角的增大而增大。对于UH-1H型转子,声压级的最大变化为0.8dB(有效声压的变化约为10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study on the noise propagation characteristics of rotor in non-uniform downwash flowfield Based on Linearized Euler Equations
To study the influence of non-uniform flowfield on the propagation characteristics of helicopter rotor noise, a Hybrid Computational Aeroacoustics (HCAA) method is developed. The acoustic source region is simulated by Computational Fluid Dynamics (CFD) technique with the Unsteady Reynolds Averaged Navier-Stokes equations (URANS) as the governing equations. Acoustic near-field is simulated by Computational Aeroacoustics (CAA) technique with the Linearized Euler Equations (LEE) as the governing equations, and the numerical discretization of the LEE is accomplished by Runge-Kutta Discontinuous Galerkin (RKDG) method. A novel acoustic source extraction method based on pressure and pressure gradient is proposed to accomplish the one-way CFD-CAA weak coupling. The HCAA method is validated through comparisons with noise experimental data of the UH-1H model rotor and the BO-105 model rotor. Based on the proposed HCAA method, the convection and refraction effects of rotor noise under different collective pitch angles are analyzed. The results show that the distortion effect of the rotor noise is most affected by the non-uniformly distributed downwash velocity field, resulting in an increment of acoustic energy below the rotor plane. The effect of non-uniformly distributed downwash velocity on noise propagation increases with the increase of the collective pitch angle. For the UH-1H model rotor, the maximum change of the sound pressure level is 0.8 dB (about 10% change of the effective sound pressure).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信