{"title":"决斗的白痴与阿贝尔和","authors":"Anton Matis, A. Slavík","doi":"10.1080/00029890.2023.2206323","DOIUrl":null,"url":null,"abstract":"Abstract We investigate a puzzle involving the winning probabilities in a duel of two players. The problem of calculating limiting probabilities leads to the summation of a divergent infinite series. The solution admits a generalization that applies to a wide class of duels.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duelling Idiots and Abel Sums\",\"authors\":\"Anton Matis, A. Slavík\",\"doi\":\"10.1080/00029890.2023.2206323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate a puzzle involving the winning probabilities in a duel of two players. The problem of calculating limiting probabilities leads to the summation of a divergent infinite series. The solution admits a generalization that applies to a wide class of duels.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00029890.2023.2206323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2206323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We investigate a puzzle involving the winning probabilities in a duel of two players. The problem of calculating limiting probabilities leads to the summation of a divergent infinite series. The solution admits a generalization that applies to a wide class of duels.