可证明性模态逻辑的谓词对应:高不可判定性和Kripke不完全性

Pub Date : 2023-02-28 DOI:10.1093/jigpal/jzad002
M. Rybakov
{"title":"可证明性模态逻辑的谓词对应:高不可判定性和Kripke不完全性","authors":"M. Rybakov","doi":"10.1093/jigpal/jzad002","DOIUrl":null,"url":null,"abstract":"\n In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\\textbf {GL}$, $\\textbf {Grz}$, $\\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\\textbf {QwGrz}$ and $\\textbf {QGL.3}$ or between $\\textbf {QwGrz}$ and $\\textbf {QGrz.3}$ is $\\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single proposition letter. As a corollary, it is proved that infinite families of modal predicate axiomatic systems, based on the classical first-order logic and the modal propositional logics $\\textbf {GL}$, $\\textbf {Grz}$, $\\textbf {wGrz}$ are not Kripke complete. Both $\\Pi ^1_1$-hardness and Kripke incompleteness results of the paper do not depend on whether the logics contain the Barcan formula.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness\",\"authors\":\"M. Rybakov\",\"doi\":\"10.1093/jigpal/jzad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\\\\textbf {GL}$, $\\\\textbf {Grz}$, $\\\\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\\\\textbf {QwGrz}$ and $\\\\textbf {QGL.3}$ or between $\\\\textbf {QwGrz}$ and $\\\\textbf {QGrz.3}$ is $\\\\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single proposition letter. As a corollary, it is proved that infinite families of modal predicate axiomatic systems, based on the classical first-order logic and the modal propositional logics $\\\\textbf {GL}$, $\\\\textbf {Grz}$, $\\\\textbf {wGrz}$ are not Kripke complete. Both $\\\\Pi ^1_1$-hardness and Kripke incompleteness results of the paper do not depend on whether the logics contain the Barcan formula.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzad002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了模态命题逻辑$\textbf{GL}$、$\textbf{Grz}$和$\textbf{wGrz}$的谓词对应项及其扩展。证明了$\textbf{QwGrz}$和$\textbf{QGL.3}$之间或$\textbf{QwGrz}$和$_textbf{QGrz.3}美元之间的每个逻辑的Kripke框架上的语义结果集是$\Pi^1_1$-即使在具有三个(有时,两个)单独变量、两个(有时一个)一元谓词字母和一个命题字母的语言中也是困难的。作为推论,证明了基于经典一阶逻辑和模态命题逻辑$\textbf{GL}$、$\textbf{Grz}$和$\textbf{wGrz}$的模态谓词公理系统的无限族不是Kripke完备的。本文的$\Pi^1_1$-硬度和Kripke不完全性结果都不取决于逻辑是否包含Barcan公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness
In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\textbf {QwGrz}$ and $\textbf {QGL.3}$ or between $\textbf {QwGrz}$ and $\textbf {QGrz.3}$ is $\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single proposition letter. As a corollary, it is proved that infinite families of modal predicate axiomatic systems, based on the classical first-order logic and the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ are not Kripke complete. Both $\Pi ^1_1$-hardness and Kripke incompleteness results of the paper do not depend on whether the logics contain the Barcan formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信