{"title":"有限可解群中prefrattini子群的交集","authors":"S. Kamornikov","doi":"10.22108/IJGT.2017.11163","DOIUrl":null,"url":null,"abstract":"Let $H$ be a prefrattini subgroup of a soluble finite group $G$. In the paper it is proved that there exist elements $x,y in G$ such that the equality $H cap H^x cap H^y = Phi (G)$ holds.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"6 1","pages":"1-5"},"PeriodicalIF":0.7000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intersections of prefrattini subgroups in finite soluble groups\",\"authors\":\"S. Kamornikov\",\"doi\":\"10.22108/IJGT.2017.11163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $H$ be a prefrattini subgroup of a soluble finite group $G$. In the paper it is proved that there exist elements $x,y in G$ such that the equality $H cap H^x cap H^y = Phi (G)$ holds.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\"6 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2017.11163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.11163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
摘要
设$H$是可溶有限群$G$的prefrattini子群。本文证明了G$中存在元素$x,y,使得等式$H cap H^x cap H^y = φ (G)$成立。
Intersections of prefrattini subgroups in finite soluble groups
Let $H$ be a prefrattini subgroup of a soluble finite group $G$. In the paper it is proved that there exist elements $x,y in G$ such that the equality $H cap H^x cap H^y = Phi (G)$ holds.
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.