若干正则图和类正则图的顶点不规则自反标记

IF 1.2 Q2 MATHEMATICS, APPLIED
I. H. Agustin, L. Susilowati, Dafik, I. N. Cangul, N. Mohanapriya
{"title":"若干正则图和类正则图的顶点不规则自反标记","authors":"I. H. Agustin, L. Susilowati, Dafik, I. N. Cangul, N. Mohanapriya","doi":"10.1080/09720529.2022.2063543","DOIUrl":null,"url":null,"abstract":"Abstract A total k-labeling is defined as a function g from the edge set to the first natural number ke and a function f from the vertex set to a non-negative even number up to 2kv , where k = max{ke , 2kv }. A vertex irregular reflexive k-labeling of the graph G is total k-labeling if wt(x) ¹ wt(x¢) for every two different vertices x and x¢ of G, where wt(x) = f (x) + Σ xy ∈E(G) g(xy). The reflexive vertex strength of the graph G, denoted by rvs(G), is the minimum k for a graph G with a vertex irregular reflexive k-labeling. We will determine the exact value of rvs(G) in this paper, where G is a regular and regular-like graph. A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with all vertices of degree r is called an r-regular graph or regular graph of degree r. A regular-like graphs is an almost regular graph that we develop in a new definition and we called it with (s, r) -almost regular graphs.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"1457 - 1473"},"PeriodicalIF":1.2000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the vertex irregular reflexive labeling of several regular and regular-like graphs\",\"authors\":\"I. H. Agustin, L. Susilowati, Dafik, I. N. Cangul, N. Mohanapriya\",\"doi\":\"10.1080/09720529.2022.2063543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A total k-labeling is defined as a function g from the edge set to the first natural number ke and a function f from the vertex set to a non-negative even number up to 2kv , where k = max{ke , 2kv }. A vertex irregular reflexive k-labeling of the graph G is total k-labeling if wt(x) ¹ wt(x¢) for every two different vertices x and x¢ of G, where wt(x) = f (x) + Σ xy ∈E(G) g(xy). The reflexive vertex strength of the graph G, denoted by rvs(G), is the minimum k for a graph G with a vertex irregular reflexive k-labeling. We will determine the exact value of rvs(G) in this paper, where G is a regular and regular-like graph. A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with all vertices of degree r is called an r-regular graph or regular graph of degree r. A regular-like graphs is an almost regular graph that we develop in a new definition and we called it with (s, r) -almost regular graphs.\",\"PeriodicalId\":46563,\"journal\":{\"name\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"volume\":\"25 1\",\"pages\":\"1457 - 1473\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09720529.2022.2063543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2063543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要将全k标记定义为从边集到第一个自然数ke的函数g和从顶点集到最大2kv的非负偶数的函数f,其中k = max{ke, 2kv}。图G的顶点不规则自反k标记是总k标记,如果对于G的每两个不同的顶点x和x¢,wt(x)¹wt(x¢),其中wt(x) = f (x) + Σ xy∈E(G) G (xy)。图G的自反顶点强度,用rvs(G)表示,是具有顶点不规则自反k标记的图G的最小k。我们将在本文中确定rvs(G)的确切值,其中G是一个正则和类正则图。正则图是指每个顶点都有相同数量的邻居的图。所有顶点为r度的正则图称为r-正则图或r度的正则图。类正则图是我们在新定义中发展的一种几乎正则图,我们称之为(s, r) -几乎正则图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the vertex irregular reflexive labeling of several regular and regular-like graphs
Abstract A total k-labeling is defined as a function g from the edge set to the first natural number ke and a function f from the vertex set to a non-negative even number up to 2kv , where k = max{ke , 2kv }. A vertex irregular reflexive k-labeling of the graph G is total k-labeling if wt(x) ¹ wt(x¢) for every two different vertices x and x¢ of G, where wt(x) = f (x) + Σ xy ∈E(G) g(xy). The reflexive vertex strength of the graph G, denoted by rvs(G), is the minimum k for a graph G with a vertex irregular reflexive k-labeling. We will determine the exact value of rvs(G) in this paper, where G is a regular and regular-like graph. A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with all vertices of degree r is called an r-regular graph or regular graph of degree r. A regular-like graphs is an almost regular graph that we develop in a new definition and we called it with (s, r) -almost regular graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信