{"title":"芳香醛与活性亚甲基化合物的缩合反应:碱性离子液体一锅法合成的有利条件","authors":"Swapnil R. Bankar","doi":"10.2174/2213337209666220301123926","DOIUrl":null,"url":null,"abstract":"\n\nIn recent times, there is an on-going interest in developing convenient and environmentally friendly synthetic methods in organic chemistry. The use of ionic liquid catalysts in organic synthesis is a developing area that allows reactions to be run at low temperature and without solvents. Literature overview revealed that room temperature supported ionic liquid catalysis is a developing field in catalytic science with huge application in organic synthesis. Hence in this current article our focus is on the one-pot synthesis of arylidene derivatives with the use of ([bmim]OH) ionic liquid.\n\n\n\nWe describe here the use of an ionic liquid catalyst, 1-n-butyl-3-methylimidazolium hydroxide, [bmim]OH), in the convenient one pot synthesis of arylidene derivatives by the reaction of the active methylene compound, malononitrile, with pyrazole aromatic aldehydes under microwave irradiation.\n\n\n\nThe functionalized ionic liquid, 1-n-butyl-3-methylimidazolium hydroxide ([bmim]OH) catalyzed Knoevenagel condensation reactions of pyrazole aromatic aldehydes with active methylene compound malononitrile carried out under microwave irradiation. The reaction progress was monitored by thin layer chromatography and the synthesized compounds were further characterized by NMR spectroscopy.\n\n\n\nThis proposed work demonstrate the utility of the use of the ionic liquid catalyst [bmim]OH, in the suitable, high yield (80-95%) microwave assisted reactions of pyrazole aromatic aldehydes with the active methylene compound malononitrile.\n\n\n\nAn eco-friendly synthesis of pyrazole derivatives has been demonstrated using ([bmim]OH) ionic liquid as a catalyst for the Knoevenagel condensation reactions of pyrazole aromatic aldehydes and malononitrile with microwave irradiation. The advantages of this green method are its convenience, mild reaction conditions, and high product yields (80-95%).\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condensation Reactions of Aromatic Aldehydes with Active Methylene Compounds: The Beneficial Sinergy of Alkaline Ionic Liquid in One Pot Synthesis\",\"authors\":\"Swapnil R. Bankar\",\"doi\":\"10.2174/2213337209666220301123926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn recent times, there is an on-going interest in developing convenient and environmentally friendly synthetic methods in organic chemistry. The use of ionic liquid catalysts in organic synthesis is a developing area that allows reactions to be run at low temperature and without solvents. Literature overview revealed that room temperature supported ionic liquid catalysis is a developing field in catalytic science with huge application in organic synthesis. Hence in this current article our focus is on the one-pot synthesis of arylidene derivatives with the use of ([bmim]OH) ionic liquid.\\n\\n\\n\\nWe describe here the use of an ionic liquid catalyst, 1-n-butyl-3-methylimidazolium hydroxide, [bmim]OH), in the convenient one pot synthesis of arylidene derivatives by the reaction of the active methylene compound, malononitrile, with pyrazole aromatic aldehydes under microwave irradiation.\\n\\n\\n\\nThe functionalized ionic liquid, 1-n-butyl-3-methylimidazolium hydroxide ([bmim]OH) catalyzed Knoevenagel condensation reactions of pyrazole aromatic aldehydes with active methylene compound malononitrile carried out under microwave irradiation. The reaction progress was monitored by thin layer chromatography and the synthesized compounds were further characterized by NMR spectroscopy.\\n\\n\\n\\nThis proposed work demonstrate the utility of the use of the ionic liquid catalyst [bmim]OH, in the suitable, high yield (80-95%) microwave assisted reactions of pyrazole aromatic aldehydes with the active methylene compound malononitrile.\\n\\n\\n\\nAn eco-friendly synthesis of pyrazole derivatives has been demonstrated using ([bmim]OH) ionic liquid as a catalyst for the Knoevenagel condensation reactions of pyrazole aromatic aldehydes and malononitrile with microwave irradiation. The advantages of this green method are its convenience, mild reaction conditions, and high product yields (80-95%).\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337209666220301123926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337209666220301123926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Condensation Reactions of Aromatic Aldehydes with Active Methylene Compounds: The Beneficial Sinergy of Alkaline Ionic Liquid in One Pot Synthesis
In recent times, there is an on-going interest in developing convenient and environmentally friendly synthetic methods in organic chemistry. The use of ionic liquid catalysts in organic synthesis is a developing area that allows reactions to be run at low temperature and without solvents. Literature overview revealed that room temperature supported ionic liquid catalysis is a developing field in catalytic science with huge application in organic synthesis. Hence in this current article our focus is on the one-pot synthesis of arylidene derivatives with the use of ([bmim]OH) ionic liquid.
We describe here the use of an ionic liquid catalyst, 1-n-butyl-3-methylimidazolium hydroxide, [bmim]OH), in the convenient one pot synthesis of arylidene derivatives by the reaction of the active methylene compound, malononitrile, with pyrazole aromatic aldehydes under microwave irradiation.
The functionalized ionic liquid, 1-n-butyl-3-methylimidazolium hydroxide ([bmim]OH) catalyzed Knoevenagel condensation reactions of pyrazole aromatic aldehydes with active methylene compound malononitrile carried out under microwave irradiation. The reaction progress was monitored by thin layer chromatography and the synthesized compounds were further characterized by NMR spectroscopy.
This proposed work demonstrate the utility of the use of the ionic liquid catalyst [bmim]OH, in the suitable, high yield (80-95%) microwave assisted reactions of pyrazole aromatic aldehydes with the active methylene compound malononitrile.
An eco-friendly synthesis of pyrazole derivatives has been demonstrated using ([bmim]OH) ionic liquid as a catalyst for the Knoevenagel condensation reactions of pyrazole aromatic aldehydes and malononitrile with microwave irradiation. The advantages of this green method are its convenience, mild reaction conditions, and high product yields (80-95%).
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.