{"title":"一类新的基于拉盖尔的Frobenius型欧拉数和多项式","authors":"W. Khan, K. S. Nisar","doi":"10.5269/bspm.52125","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a new class of generalized Laguerre-based Frobenius type Eulerian polynomials and then derive diverse explicit and implicit summation formulae and symmetric identities by using series manipulation techniques. Multifarious summation formulas and identities are given earlier for some well known polynomials such as Eulerian polynomials and Frobenius type Eulerian polynomials are generalized.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of Laguerre based Frobenius type Eulerian numbers and polynomials\",\"authors\":\"W. Khan, K. S. Nisar\",\"doi\":\"10.5269/bspm.52125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a new class of generalized Laguerre-based Frobenius type Eulerian polynomials and then derive diverse explicit and implicit summation formulae and symmetric identities by using series manipulation techniques. Multifarious summation formulas and identities are given earlier for some well known polynomials such as Eulerian polynomials and Frobenius type Eulerian polynomials are generalized.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A new class of Laguerre based Frobenius type Eulerian numbers and polynomials
In this article, we introduce a new class of generalized Laguerre-based Frobenius type Eulerian polynomials and then derive diverse explicit and implicit summation formulae and symmetric identities by using series manipulation techniques. Multifarious summation formulas and identities are given earlier for some well known polynomials such as Eulerian polynomials and Frobenius type Eulerian polynomials are generalized.