一类新的基于拉盖尔的Frobenius型欧拉数和多项式

IF 0.4 Q4 MATHEMATICS
W. Khan, K. S. Nisar
{"title":"一类新的基于拉盖尔的Frobenius型欧拉数和多项式","authors":"W. Khan, K. S. Nisar","doi":"10.5269/bspm.52125","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a new class of generalized Laguerre-based Frobenius type Eulerian polynomials and then derive diverse explicit and implicit summation formulae and symmetric identities by using series manipulation techniques. Multifarious summation formulas and identities are given earlier for some well known polynomials such as Eulerian polynomials and Frobenius type Eulerian polynomials are generalized.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of Laguerre based Frobenius type Eulerian numbers and polynomials\",\"authors\":\"W. Khan, K. S. Nisar\",\"doi\":\"10.5269/bspm.52125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a new class of generalized Laguerre-based Frobenius type Eulerian polynomials and then derive diverse explicit and implicit summation formulae and symmetric identities by using series manipulation techniques. Multifarious summation formulas and identities are given earlier for some well known polynomials such as Eulerian polynomials and Frobenius type Eulerian polynomials are generalized.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一类新的广义的基于laguerre的Frobenius型欧拉多项式,然后利用级数处理技术导出了各种显式和隐式求和公式和对称恒等式。前面给出了一些已知多项式的各种求和公式和恒等式,如欧拉多项式和推广了Frobenius型欧拉多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new class of Laguerre based Frobenius type Eulerian numbers and polynomials
In this article, we introduce a new class of generalized Laguerre-based Frobenius type Eulerian polynomials and then derive diverse explicit and implicit summation formulae and symmetric identities by using series manipulation techniques. Multifarious summation formulas and identities are given earlier for some well known polynomials such as Eulerian polynomials and Frobenius type Eulerian polynomials are generalized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信