利用改进的PINN预测双折射光纤中矢量光孤子的动态过程和模型参数

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Gang-Zhou Wu , Yin Fang , Yue-Yue Wang , Guo-Cheng Wu , Chao-Qing Dai
{"title":"利用改进的PINN预测双折射光纤中矢量光孤子的动态过程和模型参数","authors":"Gang-Zhou Wu ,&nbsp;Yin Fang ,&nbsp;Yue-Yue Wang ,&nbsp;Guo-Cheng Wu ,&nbsp;Chao-Qing Dai","doi":"10.1016/j.chaos.2021.111393","DOIUrl":null,"url":null,"abstract":"<div><p>A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrödinger equation in birefringent fibers. At the same time, the elastic collision process of the mixed bright-dark soliton is predicted. Compared the predicted results with the exact solution, the modified physics-informed neural network method is proven to be effective to solve the coupled nonlinear Schrödinger equation. Moreover, the dispersion coefficients and nonlinearity coefficients of the coupled nonlinear Schrödinger equation can be learned by modified physics-informed neural network. This provides a reference for us to use deep learning methods to study the dynamic characteristics of solitons in optical fibers.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"152 ","pages":"Article 111393"},"PeriodicalIF":5.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN\",\"authors\":\"Gang-Zhou Wu ,&nbsp;Yin Fang ,&nbsp;Yue-Yue Wang ,&nbsp;Guo-Cheng Wu ,&nbsp;Chao-Qing Dai\",\"doi\":\"10.1016/j.chaos.2021.111393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrödinger equation in birefringent fibers. At the same time, the elastic collision process of the mixed bright-dark soliton is predicted. Compared the predicted results with the exact solution, the modified physics-informed neural network method is proven to be effective to solve the coupled nonlinear Schrödinger equation. Moreover, the dispersion coefficients and nonlinearity coefficients of the coupled nonlinear Schrödinger equation can be learned by modified physics-informed neural network. This provides a reference for us to use deep learning methods to study the dynamic characteristics of solitons in optical fibers.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"152 \",\"pages\":\"Article 111393\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077921007475\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077921007475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 41

摘要

基于双折射光纤中耦合非线性Schrödinger方程,利用改进的物理信息神经网络对单孤子、双孤子和异常波等光脉冲的动力学进行了预测。同时,对明暗混合孤子的弹性碰撞过程进行了预测。将预测结果与精确解进行比较,证明了改进的物理信息神经网络方法对求解耦合非线性Schrödinger方程是有效的。此外,耦合非线性Schrödinger方程的色散系数和非线性系数可以通过改进的物理信息神经网络来学习。这为我们利用深度学习方法研究光纤中孤子的动态特性提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN

A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrödinger equation in birefringent fibers. At the same time, the elastic collision process of the mixed bright-dark soliton is predicted. Compared the predicted results with the exact solution, the modified physics-informed neural network method is proven to be effective to solve the coupled nonlinear Schrödinger equation. Moreover, the dispersion coefficients and nonlinearity coefficients of the coupled nonlinear Schrödinger equation can be learned by modified physics-informed neural network. This provides a reference for us to use deep learning methods to study the dynamic characteristics of solitons in optical fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信