关于群的一些积分表示和全局不可约性。

IF 0.7 Q2 MATHEMATICS
D. Malinin
{"title":"关于群的一些积分表示和全局不可约性。","authors":"D. Malinin","doi":"10.22108/IJGT.2017.100688.1402","DOIUrl":null,"url":null,"abstract":"Arithmetic aspects of integral representations of finite groups and their irreducibility are considered with a focus on globally irreducible representations and their generalizations to arithmetic rings. Certain problems concerning integral irreducible two-dimensional representations over number rings are discussed. Let $K$ be a \u001cfinite extension of the rational number \u001cfield and $O_K$ the ring of integers of $K$. Let $G$ be a \u001cfinite subgroup of $GL(2,K)$, the group of $(2 times 2)$-matrices over $K$. We obtain some conditions on $K$ for $G$ to be conjugate to a subgroup of $GL(2,O_K)$.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some integral representations of groups and global irreducibility.\",\"authors\":\"D. Malinin\",\"doi\":\"10.22108/IJGT.2017.100688.1402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arithmetic aspects of integral representations of finite groups and their irreducibility are considered with a focus on globally irreducible representations and their generalizations to arithmetic rings. Certain problems concerning integral irreducible two-dimensional representations over number rings are discussed. Let $K$ be a \\u001cfinite extension of the rational number \\u001cfield and $O_K$ the ring of integers of $K$. Let $G$ be a \\u001cfinite subgroup of $GL(2,K)$, the group of $(2 times 2)$-matrices over $K$. We obtain some conditions on $K$ for $G$ to be conjugate to a subgroup of $GL(2,O_K)$.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2017.100688.1402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.100688.1402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了有限群积分表示的算术方面及其不可约性,重点讨论了全局不可约表示及其对算术环的推广。讨论了数环上积分不可约二维表示的若干问题。设$K$是有理数域的有限扩展,$O_K$是$K$的整数环。设$G$是$GL(2,K)$的有限子群,$G$上的$(2乘2)$矩阵的群。我们得到了$G$与$GL(2,O_K)$的子群共轭的一些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some integral representations of groups and global irreducibility.
Arithmetic aspects of integral representations of finite groups and their irreducibility are considered with a focus on globally irreducible representations and their generalizations to arithmetic rings. Certain problems concerning integral irreducible two-dimensional representations over number rings are discussed. Let $K$ be a finite extension of the rational number field and $O_K$ the ring of integers of $K$. Let $G$ be a finite subgroup of $GL(2,K)$, the group of $(2 times 2)$-matrices over $K$. We obtain some conditions on $K$ for $G$ to be conjugate to a subgroup of $GL(2,O_K)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信