退化Hamilton-Jacobi方程的Beckmann型问题

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hamza Ennaji, N. Igbida, Van Thanh Nguyen
{"title":"退化Hamilton-Jacobi方程的Beckmann型问题","authors":"Hamza Ennaji, N. Igbida, Van Thanh Nguyen","doi":"10.1090/qam/1606","DOIUrl":null,"url":null,"abstract":"<p>The aim of this note is to give a Beckmann-type problem as well as the corresponding optimal mass transportation problem associated with a degenerate Hamilton-Jacobi equation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-parenthesis x comma nabla u right-parenthesis equals 0 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H(x,\\nabla u)=0,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coupled with non-zero Dirichlet condition <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u equals g\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">u=g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\partial \\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this article, the Hamiltonian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is continuous in both arguments, coercive and convex in the second, but not enjoying any property of existence of a smooth strict sub-solution. We also provide numerical examples to validate the correctness of theoretical formulations.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Beckmann-type problem for degenerate Hamilton-Jacobi equations\",\"authors\":\"Hamza Ennaji, N. Igbida, Van Thanh Nguyen\",\"doi\":\"10.1090/qam/1606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this note is to give a Beckmann-type problem as well as the corresponding optimal mass transportation problem associated with a degenerate Hamilton-Jacobi equation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H left-parenthesis x comma nabla u right-parenthesis equals 0 comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H(x,\\\\nabla u)=0,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> coupled with non-zero Dirichlet condition <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u equals g\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u=g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"partial-differential normal upper Omega\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\partial \\\\Omega</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In this article, the Hamiltonian <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is continuous in both arguments, coercive and convex in the second, but not enjoying any property of existence of a smooth strict sub-solution. We also provide numerical examples to validate the correctness of theoretical formulations.</p>\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1606\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1606","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是给出一个beckmann型问题以及与简并Hamilton-Jacobi方程H(x,∇u)=0, H(x, \nabla u)=0,以及∂Ω \partial\Omega上的非零Dirichlet条件u=g u=g相关的相应的最优质量输运问题。在本文中,哈密顿矩阵H H在两个论证中都是连续的,在第二个论证中是强制的和凸的,但不具有光滑严格子解存在的性质。通过数值算例验证了理论公式的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beckmann-type problem for degenerate Hamilton-Jacobi equations

The aim of this note is to give a Beckmann-type problem as well as the corresponding optimal mass transportation problem associated with a degenerate Hamilton-Jacobi equation H ( x , u ) = 0 , H(x,\nabla u)=0, coupled with non-zero Dirichlet condition u = g u=g on Ω \partial \Omega . In this article, the Hamiltonian H H is continuous in both arguments, coercive and convex in the second, but not enjoying any property of existence of a smooth strict sub-solution. We also provide numerical examples to validate the correctness of theoretical formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信