掺杂锇钨的石墨烯及石墨烯片对氢吸附的DFT研究

Balqees Suliman Alshareef
{"title":"掺杂锇钨的石墨烯及石墨烯片对氢吸附的DFT研究","authors":"Balqees Suliman Alshareef","doi":"10.4236/ojpc.2020.104012","DOIUrl":null,"url":null,"abstract":"Significant interest has been focused on graphene materials for their unique properties as Hydrogen storage materials. The development of their abilities by modifying their configuration with doped or decorated transition metals was also of great interest. In this work, using the DFT/B3LYP/6-31G/LanL2DZ level of theory, graphene sheet (GS) as one of the materials of interest was doped with two transition metals, Osmium (Os) and Tungsten (W). Two active sites on the GS were tested (C4 and C16) resulted into adsorbed systems, H2@C4-GS and H2@C16-GS. C16 position showed the largest adsorption energy compared to that at C4. Therefore, C4 was replaced by the two metals and two adsorbed systems were formed: H2@Os-GS and H2@W-GS. The binding energy of H2@Os-GS was found to be greater than that of H2@W-GS.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DFT Investigation of the Hydrogen Adsorption on Graphene and Graphene Sheet Doped with Osmium and Tungsten\",\"authors\":\"Balqees Suliman Alshareef\",\"doi\":\"10.4236/ojpc.2020.104012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant interest has been focused on graphene materials for their unique properties as Hydrogen storage materials. The development of their abilities by modifying their configuration with doped or decorated transition metals was also of great interest. In this work, using the DFT/B3LYP/6-31G/LanL2DZ level of theory, graphene sheet (GS) as one of the materials of interest was doped with two transition metals, Osmium (Os) and Tungsten (W). Two active sites on the GS were tested (C4 and C16) resulted into adsorbed systems, H2@C4-GS and H2@C16-GS. C16 position showed the largest adsorption energy compared to that at C4. Therefore, C4 was replaced by the two metals and two adsorbed systems were formed: H2@Os-GS and H2@W-GS. The binding energy of H2@Os-GS was found to be greater than that of H2@W-GS.\",\"PeriodicalId\":59839,\"journal\":{\"name\":\"物理化学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ojpc.2020.104012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojpc.2020.104012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

石墨烯材料由于其作为储氢材料的独特性能而引起了人们的极大兴趣。通过用掺杂或修饰的过渡金属修饰它们的构型来发展它们的能力也引起了极大的兴趣。在这项工作中,使用DFT/B3LYP/6-31G/LanL2DZ理论水平,石墨烯片(GS)作为感兴趣的材料之一掺杂了两种过渡金属,锇(Os)和钨(W)。测试了GS上的两个活性位点(C4和C16),得到吸附体系,H2@C4-GS和H2@C16-GS.与C4位置相比,C16位置显示出最大的吸附能。因此,C4被这两种金属取代,形成了两个吸附体系:H2@Os-GS和H2@W-GS.的结合能H2@Os-GS被发现大于H2@W-GS.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFT Investigation of the Hydrogen Adsorption on Graphene and Graphene Sheet Doped with Osmium and Tungsten
Significant interest has been focused on graphene materials for their unique properties as Hydrogen storage materials. The development of their abilities by modifying their configuration with doped or decorated transition metals was also of great interest. In this work, using the DFT/B3LYP/6-31G/LanL2DZ level of theory, graphene sheet (GS) as one of the materials of interest was doped with two transition metals, Osmium (Os) and Tungsten (W). Two active sites on the GS were tested (C4 and C16) resulted into adsorbed systems, H2@C4-GS and H2@C16-GS. C16 position showed the largest adsorption energy compared to that at C4. Therefore, C4 was replaced by the two metals and two adsorbed systems were formed: H2@Os-GS and H2@W-GS. The binding energy of H2@Os-GS was found to be greater than that of H2@W-GS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
133
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信