A. V. van Erp, M. H. Hillebrandt-Roeffen, Niek van Bree, Tim A. Plüm, U. Flucke, I. Desar, E. Fleuren, W. V. D. van der Graaf, Y. Versleijen-Jonkers
{"title":"FAK-Src复合物在促结缔组织增生小圆细胞瘤、尤文氏肉瘤和横纹肌肉瘤中的靶向作用","authors":"A. V. van Erp, M. H. Hillebrandt-Roeffen, Niek van Bree, Tim A. Plüm, U. Flucke, I. Desar, E. Fleuren, W. V. D. van der Graaf, Y. Versleijen-Jonkers","doi":"10.1155/2022/3089424","DOIUrl":null,"url":null,"abstract":"Desmoplastic small round cell tumors (DSRCTs), Ewing sarcoma (ES), and alveolar and embryonal rhabdomyosarcoma (ARMS and ERMS) are malignant sarcomas typically occurring at young age, with a poor prognosis in the metastatic setting. New treatment options are necessary. Src family kinase inhibitor dasatinib single-agent treatment has been investigated in a phase 2 study in patients with advanced sarcomas including ES and RMS but failed as a single agent in these subtypes. Since previous studies demonstrated high FAK and Src activities in RMS and ES tissue and cell lines, and dasatinib treatment was shown to upregulate activated FAK, we hypothesized that FAK-Src combination treatment could potentially be an interesting treatment option for these tumor types. We examined the effects of targeting the FAK-Src complex by addressing (p)FAK and (p)Src expressions in tumor sections of DSRCT (n = 13), ES (n = 68), ARMS (n = 21), and ERMS (n = 39) and by determining the antitumor effects of single and combined treatment with FAK inhibitor defactinib and multikinase (Abl/SFK) inhibitor dasatinib in vitro on cell lines of each subtype. In vivo effects were assessed in DSRCT and ERMS models. Concurrent pFAK and pSrc expressions (H-score >50) were observed in DSRCT (67%), ES (6%), ARMS (35%), and ERMS (19%) samples. Defactinib treatment decreased pFAK expression and reduced cell viability in all subtypes. Dasatinib treatment decreased pSrc expression and cell viability in each subtype. Combination treatment led to a complete reduction in pFAK and pSrc in each cell line and showed enhanced cell viability reduction, drug synergy, DNA damage induction, and a trend toward higher apoptosis induction in DSRCT, ERMS, and ARMS but not in ES cells. These promising in vitro results unfortunately do not translate into promising in vivo results as we did not observe a significant effect on tumor volume in vivo, and the combination did not show superior effects compared to dasatinib single-agent treatment.","PeriodicalId":21431,"journal":{"name":"Sarcoma","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Targeting the FAK-Src Complex in Desmoplastic Small Round Cell Tumors, Ewing Sarcoma, and Rhabdomyosarcoma\",\"authors\":\"A. V. van Erp, M. H. Hillebrandt-Roeffen, Niek van Bree, Tim A. Plüm, U. Flucke, I. Desar, E. Fleuren, W. V. D. van der Graaf, Y. Versleijen-Jonkers\",\"doi\":\"10.1155/2022/3089424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Desmoplastic small round cell tumors (DSRCTs), Ewing sarcoma (ES), and alveolar and embryonal rhabdomyosarcoma (ARMS and ERMS) are malignant sarcomas typically occurring at young age, with a poor prognosis in the metastatic setting. New treatment options are necessary. Src family kinase inhibitor dasatinib single-agent treatment has been investigated in a phase 2 study in patients with advanced sarcomas including ES and RMS but failed as a single agent in these subtypes. Since previous studies demonstrated high FAK and Src activities in RMS and ES tissue and cell lines, and dasatinib treatment was shown to upregulate activated FAK, we hypothesized that FAK-Src combination treatment could potentially be an interesting treatment option for these tumor types. We examined the effects of targeting the FAK-Src complex by addressing (p)FAK and (p)Src expressions in tumor sections of DSRCT (n = 13), ES (n = 68), ARMS (n = 21), and ERMS (n = 39) and by determining the antitumor effects of single and combined treatment with FAK inhibitor defactinib and multikinase (Abl/SFK) inhibitor dasatinib in vitro on cell lines of each subtype. In vivo effects were assessed in DSRCT and ERMS models. Concurrent pFAK and pSrc expressions (H-score >50) were observed in DSRCT (67%), ES (6%), ARMS (35%), and ERMS (19%) samples. Defactinib treatment decreased pFAK expression and reduced cell viability in all subtypes. Dasatinib treatment decreased pSrc expression and cell viability in each subtype. Combination treatment led to a complete reduction in pFAK and pSrc in each cell line and showed enhanced cell viability reduction, drug synergy, DNA damage induction, and a trend toward higher apoptosis induction in DSRCT, ERMS, and ARMS but not in ES cells. These promising in vitro results unfortunately do not translate into promising in vivo results as we did not observe a significant effect on tumor volume in vivo, and the combination did not show superior effects compared to dasatinib single-agent treatment.\",\"PeriodicalId\":21431,\"journal\":{\"name\":\"Sarcoma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sarcoma\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3089424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sarcoma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3089424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Targeting the FAK-Src Complex in Desmoplastic Small Round Cell Tumors, Ewing Sarcoma, and Rhabdomyosarcoma
Desmoplastic small round cell tumors (DSRCTs), Ewing sarcoma (ES), and alveolar and embryonal rhabdomyosarcoma (ARMS and ERMS) are malignant sarcomas typically occurring at young age, with a poor prognosis in the metastatic setting. New treatment options are necessary. Src family kinase inhibitor dasatinib single-agent treatment has been investigated in a phase 2 study in patients with advanced sarcomas including ES and RMS but failed as a single agent in these subtypes. Since previous studies demonstrated high FAK and Src activities in RMS and ES tissue and cell lines, and dasatinib treatment was shown to upregulate activated FAK, we hypothesized that FAK-Src combination treatment could potentially be an interesting treatment option for these tumor types. We examined the effects of targeting the FAK-Src complex by addressing (p)FAK and (p)Src expressions in tumor sections of DSRCT (n = 13), ES (n = 68), ARMS (n = 21), and ERMS (n = 39) and by determining the antitumor effects of single and combined treatment with FAK inhibitor defactinib and multikinase (Abl/SFK) inhibitor dasatinib in vitro on cell lines of each subtype. In vivo effects were assessed in DSRCT and ERMS models. Concurrent pFAK and pSrc expressions (H-score >50) were observed in DSRCT (67%), ES (6%), ARMS (35%), and ERMS (19%) samples. Defactinib treatment decreased pFAK expression and reduced cell viability in all subtypes. Dasatinib treatment decreased pSrc expression and cell viability in each subtype. Combination treatment led to a complete reduction in pFAK and pSrc in each cell line and showed enhanced cell viability reduction, drug synergy, DNA damage induction, and a trend toward higher apoptosis induction in DSRCT, ERMS, and ARMS but not in ES cells. These promising in vitro results unfortunately do not translate into promising in vivo results as we did not observe a significant effect on tumor volume in vivo, and the combination did not show superior effects compared to dasatinib single-agent treatment.
SarcomaMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
14 weeks
期刊介绍:
Sarcoma is dedicated to publishing papers covering all aspects of connective tissue oncology research. It brings together work from scientists and clinicians carrying out a broad range of research in this field, including the basic sciences, molecular biology and pathology and the clinical sciences of epidemiology, surgery, radiotherapy and chemotherapy. High-quality papers concerning the entire range of bone and soft tissue sarcomas in both adults and children, including Kaposi"s sarcoma, are published as well as preclinical and animal studies. This journal provides a central forum for the description of advances in diagnosis, assessment and treatment of this rarely seen, but often mismanaged, group of patients.