C^*$-代数连续映射空间上的Jordan $*$-同态

IF 0.7 3区 数学 Q2 MATHEMATICS
Shiho Oi
{"title":"C^*$-代数连续映射空间上的Jordan $*$-同态","authors":"Shiho Oi","doi":"10.4064/sm220210-19-6","DOIUrl":null,"url":null,"abstract":"Let A be a unital C∗-algebra. We consider Jordan ∗-homomorphisms on C(X,A) and Jordan ∗-homomorphisms on Lip(X,A). More precisely, for any unital C∗-algebra A, we prove that every Jordan ∗-homomorphism on C(X,A) and every Jordan ∗-homomorphism on Lip(X,A) is represented as a weighted composition operator by using the irreducible representations of A. In addition, when A1 and A2 are primitive C∗-algebras, we characterize the Jordan ∗-isomorphisms. These results unify and enrich previous works on algebra ∗-homomorphisms on C(X,A) and Lip(X,A) for several concrete examples of A.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan $*$-homomorphisms on the spaces of continuous maps taking values in $C^*$-algebras\",\"authors\":\"Shiho Oi\",\"doi\":\"10.4064/sm220210-19-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A be a unital C∗-algebra. We consider Jordan ∗-homomorphisms on C(X,A) and Jordan ∗-homomorphisms on Lip(X,A). More precisely, for any unital C∗-algebra A, we prove that every Jordan ∗-homomorphism on C(X,A) and every Jordan ∗-homomorphism on Lip(X,A) is represented as a weighted composition operator by using the irreducible representations of A. In addition, when A1 and A2 are primitive C∗-algebras, we characterize the Jordan ∗-isomorphisms. These results unify and enrich previous works on algebra ∗-homomorphisms on C(X,A) and Lip(X,A) for several concrete examples of A.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220210-19-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220210-19-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A是一个单位C*-代数。我们考虑C(X,A)上的Jordan*-同态和Lip(X,A)上的Jordan*-同态。更确切地说,对于任何单位C*-代数A,我们通过使用A的不可约表示,证明了C(X,A)上的每个Jordan*-同态和Lip(X,A)上的每一个Jordan*-同构都表示为加权合成算子。这些结果统一并丰富了以前关于代数的工作*-关于A的几个具体例子的C(X,A)和Lip(X,A)上的同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jordan $*$-homomorphisms on the spaces of continuous maps taking values in $C^*$-algebras
Let A be a unital C∗-algebra. We consider Jordan ∗-homomorphisms on C(X,A) and Jordan ∗-homomorphisms on Lip(X,A). More precisely, for any unital C∗-algebra A, we prove that every Jordan ∗-homomorphism on C(X,A) and every Jordan ∗-homomorphism on Lip(X,A) is represented as a weighted composition operator by using the irreducible representations of A. In addition, when A1 and A2 are primitive C∗-algebras, we characterize the Jordan ∗-isomorphisms. These results unify and enrich previous works on algebra ∗-homomorphisms on C(X,A) and Lip(X,A) for several concrete examples of A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信