T. Zhang, Ludi Kang, Xin Li, Hongbo Zhang, Bilong Liu
{"title":"蜂窝和泡沫夹层板的声传输预测及辐射项的重点讨论","authors":"T. Zhang, Ludi Kang, Xin Li, Hongbo Zhang, Bilong Liu","doi":"10.20855/IJAV.2020.25.11735","DOIUrl":null,"url":null,"abstract":"When applying the modal summation method to the sound transmission loss (STL) prediction of various plates, the assumption of the blocked sound pressure, or alternatively speaking, ignoring sound radiation terms, has obvious simplicity and is sometimes used for the single-layered panels, rib-stiffened plates or heavily damped sandwich plates. For light-weighted sandwich plates with honeycomb and foam cores, however, this assumption is somewhat in doubt and worth examining. Based on sixth-order differential equations governing the flexural vibration of sandwich plates, the prediction formula of STL is derived by the modal summation approach. Theoretical predictions were validated by measurement data. Next, the theoretical formula of STL under the assumption of the blocked sound pressure was examined. The STL discrepancies of sandwich plates caused by sound radiation terms are illustrated. It was found that the STL discrepancies of sandwich plates were closely related to frequency, reached their peak value at the coincidence frequency region. The results indicate that the sound radiation terms, or the couplings between the radiated sound pressure and the plate response, should not be ignored for the prediction of STL for sandwich plates with honeycomb and foam cores.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"26 1","pages":"70-79"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sound Transmission Prediction of Sandwich Plates With Honeycomb and Foam Cores and an Emphatic Discussion on Radiation Terms\",\"authors\":\"T. Zhang, Ludi Kang, Xin Li, Hongbo Zhang, Bilong Liu\",\"doi\":\"10.20855/IJAV.2020.25.11735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When applying the modal summation method to the sound transmission loss (STL) prediction of various plates, the assumption of the blocked sound pressure, or alternatively speaking, ignoring sound radiation terms, has obvious simplicity and is sometimes used for the single-layered panels, rib-stiffened plates or heavily damped sandwich plates. For light-weighted sandwich plates with honeycomb and foam cores, however, this assumption is somewhat in doubt and worth examining. Based on sixth-order differential equations governing the flexural vibration of sandwich plates, the prediction formula of STL is derived by the modal summation approach. Theoretical predictions were validated by measurement data. Next, the theoretical formula of STL under the assumption of the blocked sound pressure was examined. The STL discrepancies of sandwich plates caused by sound radiation terms are illustrated. It was found that the STL discrepancies of sandwich plates were closely related to frequency, reached their peak value at the coincidence frequency region. The results indicate that the sound radiation terms, or the couplings between the radiated sound pressure and the plate response, should not be ignored for the prediction of STL for sandwich plates with honeycomb and foam cores.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":\"26 1\",\"pages\":\"70-79\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2020.25.11735\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2020.25.11735","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Sound Transmission Prediction of Sandwich Plates With Honeycomb and Foam Cores and an Emphatic Discussion on Radiation Terms
When applying the modal summation method to the sound transmission loss (STL) prediction of various plates, the assumption of the blocked sound pressure, or alternatively speaking, ignoring sound radiation terms, has obvious simplicity and is sometimes used for the single-layered panels, rib-stiffened plates or heavily damped sandwich plates. For light-weighted sandwich plates with honeycomb and foam cores, however, this assumption is somewhat in doubt and worth examining. Based on sixth-order differential equations governing the flexural vibration of sandwich plates, the prediction formula of STL is derived by the modal summation approach. Theoretical predictions were validated by measurement data. Next, the theoretical formula of STL under the assumption of the blocked sound pressure was examined. The STL discrepancies of sandwich plates caused by sound radiation terms are illustrated. It was found that the STL discrepancies of sandwich plates were closely related to frequency, reached their peak value at the coincidence frequency region. The results indicate that the sound radiation terms, or the couplings between the radiated sound pressure and the plate response, should not be ignored for the prediction of STL for sandwich plates with honeycomb and foam cores.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.