{"title":"阅读新闻而非书籍:通过深度文本挖掘预测企业的长期财务业绩","authors":"Shuang (Sophie) Zhai, Zhu Zhang","doi":"10.1145/3533018","DOIUrl":null,"url":null,"abstract":"In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":"14 1","pages":"1 - 37"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Read the News, Not the Books: Forecasting Firms’ Long-term Financial Performance via Deep Text Mining\",\"authors\":\"Shuang (Sophie) Zhai, Zhu Zhang\",\"doi\":\"10.1145/3533018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.\",\"PeriodicalId\":45274,\"journal\":{\"name\":\"ACM Transactions on Management Information Systems\",\"volume\":\"14 1\",\"pages\":\"1 - 37\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Management Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Read the News, Not the Books: Forecasting Firms’ Long-term Financial Performance via Deep Text Mining
In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.