理查兹方程的多连续统均匀化:推导与数值实验

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
D. Ammosov, S. Stepanov, D. Spiridonov, Wenyuan Li
{"title":"理查兹方程的多连续统均匀化:推导与数值实验","authors":"D. Ammosov, S. Stepanov, D. Spiridonov, Wenyuan Li","doi":"10.1515/rnam-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, the authors rigorously derive Richards’ multicontinuum model using the multicontinuum homogenization approach. This approach is based on formulating constraint cell problems and a homogenization-like expansion. We present numerical results for the two continua case with separable coefficients. First, we explore the relationships between the effective coefficients and the hydraulic conductivity. Then, we solve test problems with different contrasts to study the developed multicontinuum model.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"38 1","pages":"207 - 218"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicontinuum homogenization for Richards’ equation: The derivation and numerical experiments\",\"authors\":\"D. Ammosov, S. Stepanov, D. Spiridonov, Wenyuan Li\",\"doi\":\"10.1515/rnam-2023-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, the authors rigorously derive Richards’ multicontinuum model using the multicontinuum homogenization approach. This approach is based on formulating constraint cell problems and a homogenization-like expansion. We present numerical results for the two continua case with separable coefficients. First, we explore the relationships between the effective coefficients and the hydraulic conductivity. Then, we solve test problems with different contrasts to study the developed multicontinuum model.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":\"38 1\",\"pages\":\"207 - 218\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2023-0016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,作者使用多连续谱均匀化方法严格推导了Richards的多连续谱模型。这种方法基于公式化约束单元问题和类均匀化展开。我们给出了具有可分离系数的两个连续情形的数值结果。首先,我们探讨了有效系数与导水率之间的关系。然后,我们解决了不同对比度的测试问题,研究了所开发的多连续谱模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicontinuum homogenization for Richards’ equation: The derivation and numerical experiments
Abstract In the present paper, the authors rigorously derive Richards’ multicontinuum model using the multicontinuum homogenization approach. This approach is based on formulating constraint cell problems and a homogenization-like expansion. We present numerical results for the two continua case with separable coefficients. First, we explore the relationships between the effective coefficients and the hydraulic conductivity. Then, we solve test problems with different contrasts to study the developed multicontinuum model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信