从辅助矩阵的项恢复图的特征多项式

IF 0.7 4区 数学 Q2 Mathematics
Alexander Farrugia
{"title":"从辅助矩阵的项恢复图的特征多项式","authors":"Alexander Farrugia","doi":"10.13001/ela.2022.7231","DOIUrl":null,"url":null,"abstract":"The adjugate matrix of $G$, denoted by $\\operatorname{adj}(G)$, is the adjugate of the matrix $x\\mathbf{I}-\\mathbf{A}$, where $\\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\\operatorname{\\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\\operatorname{adj}(G)$ are precisely the elements of $\\operatorname{\\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\\operatorname{\\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\\operatorname{adj}(G)$.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovering the characteristic polynomial of a graph from entries of the adjugate matrix\",\"authors\":\"Alexander Farrugia\",\"doi\":\"10.13001/ela.2022.7231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adjugate matrix of $G$, denoted by $\\\\operatorname{adj}(G)$, is the adjugate of the matrix $x\\\\mathbf{I}-\\\\mathbf{A}$, where $\\\\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\\\\operatorname{\\\\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\\\\operatorname{adj}(G)$ are precisely the elements of $\\\\operatorname{\\\\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\\\\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\\\\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\\\\operatorname{\\\\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\\\\operatorname{adj}(G)$.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7231\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7231","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

$G$的辅助门矩阵,用$\operatorname{adj}(G)$表示,是矩阵$x\mathbf的辅助门{I}-\其中$\mathbf{A}$是$G$的邻接矩阵。多项式重构问题(PRP)询问图$G$的特征多项式是否总是可以从包含$G$顶点删除子图的$n$特征多项式的多集$\算子名{\mathcal{PD}}(G)$中恢复。注意到$\operatorname{adj}(G)$的$n$对角项正是$\operator name{\mathcal{PD}}{(G。此外,我们根据图的特征多项式来解释$\operatorname{adj}(G)$对角线外的条目,使我们能够求解PRP的版本,该版本利用$\operator name{\mathcal{PD}}{G)$的替代多集,该版本包含与图特征多项式相关的多项式,而不是来自$\operatorname{adj}(G)$的条目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovering the characteristic polynomial of a graph from entries of the adjugate matrix
The adjugate matrix of $G$, denoted by $\operatorname{adj}(G)$, is the adjugate of the matrix $x\mathbf{I}-\mathbf{A}$, where $\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\operatorname{\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\operatorname{adj}(G)$ are precisely the elements of $\operatorname{\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\operatorname{\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\operatorname{adj}(G)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信