{"title":"从辅助矩阵的项恢复图的特征多项式","authors":"Alexander Farrugia","doi":"10.13001/ela.2022.7231","DOIUrl":null,"url":null,"abstract":"The adjugate matrix of $G$, denoted by $\\operatorname{adj}(G)$, is the adjugate of the matrix $x\\mathbf{I}-\\mathbf{A}$, where $\\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\\operatorname{\\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\\operatorname{adj}(G)$ are precisely the elements of $\\operatorname{\\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\\operatorname{\\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\\operatorname{adj}(G)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovering the characteristic polynomial of a graph from entries of the adjugate matrix\",\"authors\":\"Alexander Farrugia\",\"doi\":\"10.13001/ela.2022.7231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adjugate matrix of $G$, denoted by $\\\\operatorname{adj}(G)$, is the adjugate of the matrix $x\\\\mathbf{I}-\\\\mathbf{A}$, where $\\\\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\\\\operatorname{\\\\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\\\\operatorname{adj}(G)$ are precisely the elements of $\\\\operatorname{\\\\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\\\\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\\\\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\\\\operatorname{\\\\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\\\\operatorname{adj}(G)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recovering the characteristic polynomial of a graph from entries of the adjugate matrix
The adjugate matrix of $G$, denoted by $\operatorname{adj}(G)$, is the adjugate of the matrix $x\mathbf{I}-\mathbf{A}$, where $\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\operatorname{\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\operatorname{adj}(G)$ are precisely the elements of $\operatorname{\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\operatorname{\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\operatorname{adj}(G)$.