从辅助矩阵的项恢复图的特征多项式

Pub Date : 2022-10-28 DOI:10.13001/ela.2022.7231
Alexander Farrugia
{"title":"从辅助矩阵的项恢复图的特征多项式","authors":"Alexander Farrugia","doi":"10.13001/ela.2022.7231","DOIUrl":null,"url":null,"abstract":"The adjugate matrix of $G$, denoted by $\\operatorname{adj}(G)$, is the adjugate of the matrix $x\\mathbf{I}-\\mathbf{A}$, where $\\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\\operatorname{\\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\\operatorname{adj}(G)$ are precisely the elements of $\\operatorname{\\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\\operatorname{\\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\\operatorname{adj}(G)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovering the characteristic polynomial of a graph from entries of the adjugate matrix\",\"authors\":\"Alexander Farrugia\",\"doi\":\"10.13001/ela.2022.7231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adjugate matrix of $G$, denoted by $\\\\operatorname{adj}(G)$, is the adjugate of the matrix $x\\\\mathbf{I}-\\\\mathbf{A}$, where $\\\\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\\\\operatorname{\\\\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\\\\operatorname{adj}(G)$ are precisely the elements of $\\\\operatorname{\\\\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\\\\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\\\\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\\\\operatorname{\\\\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\\\\operatorname{adj}(G)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$G$的辅助门矩阵,用$\operatorname{adj}(G)$表示,是矩阵$x\mathbf的辅助门{I}-\其中$\mathbf{A}$是$G$的邻接矩阵。多项式重构问题(PRP)询问图$G$的特征多项式是否总是可以从包含$G$顶点删除子图的$n$特征多项式的多集$\算子名{\mathcal{PD}}(G)$中恢复。注意到$\operatorname{adj}(G)$的$n$对角项正是$\operator name{\mathcal{PD}}{(G。此外,我们根据图的特征多项式来解释$\operatorname{adj}(G)$对角线外的条目,使我们能够求解PRP的版本,该版本利用$\operator name{\mathcal{PD}}{G)$的替代多集,该版本包含与图特征多项式相关的多项式,而不是来自$\operatorname{adj}(G)$的条目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Recovering the characteristic polynomial of a graph from entries of the adjugate matrix
The adjugate matrix of $G$, denoted by $\operatorname{adj}(G)$, is the adjugate of the matrix $x\mathbf{I}-\mathbf{A}$, where $\mathbf{A}$ is the adjacency matrix of $G$. The polynomial reconstruction problem (PRP) asks if the characteristic polynomial of a graph $G$ can always be recovered from the multiset $\operatorname{\mathcal{PD}}(G)$ containing the $n$ characteristic polynomials of the vertex-deleted subgraphs of $G$. Noting that the $n$ diagonal entries of $\operatorname{adj}(G)$ are precisely the elements of $\operatorname{\mathcal{PD}}(G)$, we investigate variants of the PRP in which multisets containing entries from $\operatorname{adj}(G)$ successfully reconstruct the characteristic polynomial of $G$. Furthermore, we interpret the entries off the diagonal of $\operatorname{adj}(G)$ in terms of characteristic polynomials of graphs, allowing us to solve versions of the PRP that utilize alternative multisets to $\operatorname{\mathcal{PD}}(G)$ containing polynomials related to characteristic polynomials of graphs, rather than entries from $\operatorname{adj}(G)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信