关于区域连接微积分的一些元拓扑特征

IF 0.6 Q2 LOGIC
Nathaniel Gan
{"title":"关于区域连接微积分的一些元拓扑特征","authors":"Nathaniel Gan","doi":"10.12775/llp.2023.002","DOIUrl":null,"url":null,"abstract":"This paper examines several intended topological features of the Region Connection Calculus (RCC) and argues that they are either underdetermined by the formal theory or given by the complement axiom. Conditions are identified under which the axioms of RCC are satisfied in topological models under various set restrictions. The results generalise previous results in the literature to non-strict topological models and across possible interpretations of connection. It is shown that the intended interpretation of connection and the alignment of self-connection with topological connection are underdetermined by the axioms of RCC, which suggests that additional axioms are necessary to secure these features. It is also argued that the complement axiom gives RCC models much of their topological structure. In particular, the incompatibility of RCC with interiors is argued to be given by the complement axiom.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Meta-Theoretic Topological Features of the Region Connection Calculus\",\"authors\":\"Nathaniel Gan\",\"doi\":\"10.12775/llp.2023.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines several intended topological features of the Region Connection Calculus (RCC) and argues that they are either underdetermined by the formal theory or given by the complement axiom. Conditions are identified under which the axioms of RCC are satisfied in topological models under various set restrictions. The results generalise previous results in the literature to non-strict topological models and across possible interpretations of connection. It is shown that the intended interpretation of connection and the alignment of self-connection with topological connection are underdetermined by the axioms of RCC, which suggests that additional axioms are necessary to secure these features. It is also argued that the complement axiom gives RCC models much of their topological structure. In particular, the incompatibility of RCC with interiors is argued to be given by the complement axiom.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2023.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2023.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

本文考察了区域连接演算(RCC)的几个预定拓扑特征,认为它们要么是形式理论欠定的,要么是补公理给出的。在各种集合限制下,确定了拓扑模型中满足RCC公理的条件。这些结果将文献中先前的结果推广到非严格拓扑模型和对连接的可能解释。结果表明,RCC的公理对连接的预期解释以及自连接与拓扑连接的对齐是不完全确定的,这表明需要额外的公理来保证这些特征。也有人认为,补公理赋予了RCC模型很大的拓扑结构。特别地,RCC与内部的不相容性被认为是由补公理给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Meta-Theoretic Topological Features of the Region Connection Calculus
This paper examines several intended topological features of the Region Connection Calculus (RCC) and argues that they are either underdetermined by the formal theory or given by the complement axiom. Conditions are identified under which the axioms of RCC are satisfied in topological models under various set restrictions. The results generalise previous results in the literature to non-strict topological models and across possible interpretations of connection. It is shown that the intended interpretation of connection and the alignment of self-connection with topological connection are underdetermined by the axioms of RCC, which suggests that additional axioms are necessary to secure these features. It is also argued that the complement axiom gives RCC models much of their topological structure. In particular, the incompatibility of RCC with interiors is argued to be given by the complement axiom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信