2阶自同构与非退化偶格相关的顶点代数不动点子代数的不可约弱模(下)

IF 0.7 4区 数学 Q2 MATHEMATICS
K. Tanabe
{"title":"2阶自同构与非退化偶格相关的顶点代数不动点子代数的不可约弱模(下)","authors":"K. Tanabe","doi":"10.2969/jmsj/89848984","DOIUrl":null,"url":null,"abstract":"Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2)\",\"authors\":\"K. Tanabe\",\"doi\":\"10.2969/jmsj/89848984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\\\\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\\\\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\\\\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\\\\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.\",\"PeriodicalId\":49988,\"journal\":{\"name\":\"Journal of the Mathematical Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mathematical Society of Japan\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/89848984\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/89848984","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$V_{L}$是与非退化偶格$L$相关的顶点代数,$\theta$是由$L$的$-1$对称性引起的$V_{L}$的自同构,$V_。在这一系列的论文中,我们对不可约弱$V_{L}^{+}$-模进行了分类,并证明了任何不可约的弱$V_{L}^{+}$-模同构于某个不可约软弱$V_{L}$-模的弱子模,或同构于某一不可约$\theta$-扭曲$V_。设$M(1)^{+}$是Heisenberg顶点算子代数$M(2)$在$\theta$作用下的不动点子代数。在本文(第2$部分)中,我们证明了在任何非零弱$V_{L}^{+}$-模中都存在一个不可约$M(1)^{+}-子模,并且我们计算了$M(2)^{+}$的可拓群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2)
Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信