H. Dhiflaoui, Mohamed Ali Hajjaji, A. Hajjaji, L. Khezami, A. Karrech, B. Bessais, Ahmed Ben Cheikh Larbia, M. Amlouk
{"title":"光还原法制备银纳米粒子(Ag- nps)修饰TiO2纳米管(TiO2- nts),增强其界面粘附性","authors":"H. Dhiflaoui, Mohamed Ali Hajjaji, A. Hajjaji, L. Khezami, A. Karrech, B. Bessais, Ahmed Ben Cheikh Larbia, M. Amlouk","doi":"10.1115/1.4062485","DOIUrl":null,"url":null,"abstract":"\n In the present study, the adhesion of TiO2 nanotubes (TiO2-NTs) to thicker substrates was improved by decorating them with metallic Ag nanoparticles (NPs) using the photo-reduction process. The obtained coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). X-ray diffraction (XRD) confirmed that all TiO2-NTs crystallized in anatase after annealing at 400°C regardless of the anodization potential. The scanning electron microscopy (SEM) indicated that the TiO2-NTs were uniformly distributed on the substrate with an ordered and vertically aligned morphology. It also revealed that the diameter of the TiO2-NTs reached~100 nm. The decoration of TiO2-NTs surface with silver nanoparticles was assessed by transmission electron microscopy (TEM). Moreover, a new scratch test mode called ‘wear mode’ was performed to evaluate the wear resistance of the coatings. Results obtained by the scratch tests proved that the decorated coating with Ag nanoparticles improved the interfacial adhesion. The friction coefficient decreased from 0.65 to 0.45 when pure TiO2 was decorated with 10 min-Ag-NPs.The wear behavior was studied using a multi-pass scratch test. It was found that the wear volume reduced with the incorporation of Ag nanoparticles. The study of the damage mechanisms showed visco-elastic plastic deformation in the pure TiO2 coating.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced interfacial adhesion of TiO2 nanotubes (TiO2-NTs) decorated with Ag Silver nanoparticles (Ag-NPs) prepared by photo-reduction process\",\"authors\":\"H. Dhiflaoui, Mohamed Ali Hajjaji, A. Hajjaji, L. Khezami, A. Karrech, B. Bessais, Ahmed Ben Cheikh Larbia, M. Amlouk\",\"doi\":\"10.1115/1.4062485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present study, the adhesion of TiO2 nanotubes (TiO2-NTs) to thicker substrates was improved by decorating them with metallic Ag nanoparticles (NPs) using the photo-reduction process. The obtained coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). X-ray diffraction (XRD) confirmed that all TiO2-NTs crystallized in anatase after annealing at 400°C regardless of the anodization potential. The scanning electron microscopy (SEM) indicated that the TiO2-NTs were uniformly distributed on the substrate with an ordered and vertically aligned morphology. It also revealed that the diameter of the TiO2-NTs reached~100 nm. The decoration of TiO2-NTs surface with silver nanoparticles was assessed by transmission electron microscopy (TEM). Moreover, a new scratch test mode called ‘wear mode’ was performed to evaluate the wear resistance of the coatings. Results obtained by the scratch tests proved that the decorated coating with Ag nanoparticles improved the interfacial adhesion. The friction coefficient decreased from 0.65 to 0.45 when pure TiO2 was decorated with 10 min-Ag-NPs.The wear behavior was studied using a multi-pass scratch test. It was found that the wear volume reduced with the incorporation of Ag nanoparticles. The study of the damage mechanisms showed visco-elastic plastic deformation in the pure TiO2 coating.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062485\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062485","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Enhanced interfacial adhesion of TiO2 nanotubes (TiO2-NTs) decorated with Ag Silver nanoparticles (Ag-NPs) prepared by photo-reduction process
In the present study, the adhesion of TiO2 nanotubes (TiO2-NTs) to thicker substrates was improved by decorating them with metallic Ag nanoparticles (NPs) using the photo-reduction process. The obtained coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). X-ray diffraction (XRD) confirmed that all TiO2-NTs crystallized in anatase after annealing at 400°C regardless of the anodization potential. The scanning electron microscopy (SEM) indicated that the TiO2-NTs were uniformly distributed on the substrate with an ordered and vertically aligned morphology. It also revealed that the diameter of the TiO2-NTs reached~100 nm. The decoration of TiO2-NTs surface with silver nanoparticles was assessed by transmission electron microscopy (TEM). Moreover, a new scratch test mode called ‘wear mode’ was performed to evaluate the wear resistance of the coatings. Results obtained by the scratch tests proved that the decorated coating with Ag nanoparticles improved the interfacial adhesion. The friction coefficient decreased from 0.65 to 0.45 when pure TiO2 was decorated with 10 min-Ag-NPs.The wear behavior was studied using a multi-pass scratch test. It was found that the wear volume reduced with the incorporation of Ag nanoparticles. The study of the damage mechanisms showed visco-elastic plastic deformation in the pure TiO2 coating.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints