Ibrahima Goudiaby, Benoît Guillot, Emmanuel Wenger, Sarra Soudani, Cherif ben Nasr, Magatte Camara, Abdoulaye Gassama, Christian Jelsch
{"title":"月桂酸钠晶体结构中电荷辅助氢键的研究","authors":"Ibrahima Goudiaby, Benoît Guillot, Emmanuel Wenger, Sarra Soudani, Cherif ben Nasr, Magatte Camara, Abdoulaye Gassama, Christian Jelsch","doi":"10.1007/s10870-022-00946-0","DOIUrl":null,"url":null,"abstract":"<div><p>Crystals of Sodium Laurate, Lauric Acid (NaLLA) were obtained and the structure was determined by single-crystal X-ray diffraction. The new crystal form is monoclinic of space group P2<sub>1</sub>/c. The asymmetric unit contains two independent laurate molecules whose carboxylic/carboxylate groups are linked by a low barrier O-H…O hydrogen bond. Two lauric/laurate molecules are in a head-to-head configuration and the elongated hydrophobic chains are parallel to the long <i>b</i> axis. The carboxylic hydrogen atom was found to be disordered, bound on each of the two carboxylate groups in an unsymmetrical way. The non-symmetrical character of the hydrogen bond is related to the presence of two independent fatty acid molecules in the asymmetric unit and is in accordance with the different lengths of the four C-O bonds present in the molecular structure. The crystal structure was analyzed in terms of interactions on the Hirshfeld surface. The packing is stabilized by hydrogen bonds and O…Na ionic interactions in the hydrophilic layer and by C-H…H-C contacts in the hydrophobic layers which are the most enriched major contacts.</p></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"53 1","pages":"93 - 104"},"PeriodicalIF":0.4000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Case of Charge-Assisted Hydrogen Bonding in the Crystal Structure of Sodium Laurate, Lauric Acid\",\"authors\":\"Ibrahima Goudiaby, Benoît Guillot, Emmanuel Wenger, Sarra Soudani, Cherif ben Nasr, Magatte Camara, Abdoulaye Gassama, Christian Jelsch\",\"doi\":\"10.1007/s10870-022-00946-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crystals of Sodium Laurate, Lauric Acid (NaLLA) were obtained and the structure was determined by single-crystal X-ray diffraction. The new crystal form is monoclinic of space group P2<sub>1</sub>/c. The asymmetric unit contains two independent laurate molecules whose carboxylic/carboxylate groups are linked by a low barrier O-H…O hydrogen bond. Two lauric/laurate molecules are in a head-to-head configuration and the elongated hydrophobic chains are parallel to the long <i>b</i> axis. The carboxylic hydrogen atom was found to be disordered, bound on each of the two carboxylate groups in an unsymmetrical way. The non-symmetrical character of the hydrogen bond is related to the presence of two independent fatty acid molecules in the asymmetric unit and is in accordance with the different lengths of the four C-O bonds present in the molecular structure. The crystal structure was analyzed in terms of interactions on the Hirshfeld surface. The packing is stabilized by hydrogen bonds and O…Na ionic interactions in the hydrophilic layer and by C-H…H-C contacts in the hydrophobic layers which are the most enriched major contacts.</p></div>\",\"PeriodicalId\":615,\"journal\":{\"name\":\"Journal of Chemical Crystallography\",\"volume\":\"53 1\",\"pages\":\"93 - 104\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Crystallography\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10870-022-00946-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Crystallography","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10870-022-00946-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Case of Charge-Assisted Hydrogen Bonding in the Crystal Structure of Sodium Laurate, Lauric Acid
Crystals of Sodium Laurate, Lauric Acid (NaLLA) were obtained and the structure was determined by single-crystal X-ray diffraction. The new crystal form is monoclinic of space group P21/c. The asymmetric unit contains two independent laurate molecules whose carboxylic/carboxylate groups are linked by a low barrier O-H…O hydrogen bond. Two lauric/laurate molecules are in a head-to-head configuration and the elongated hydrophobic chains are parallel to the long b axis. The carboxylic hydrogen atom was found to be disordered, bound on each of the two carboxylate groups in an unsymmetrical way. The non-symmetrical character of the hydrogen bond is related to the presence of two independent fatty acid molecules in the asymmetric unit and is in accordance with the different lengths of the four C-O bonds present in the molecular structure. The crystal structure was analyzed in terms of interactions on the Hirshfeld surface. The packing is stabilized by hydrogen bonds and O…Na ionic interactions in the hydrophilic layer and by C-H…H-C contacts in the hydrophobic layers which are the most enriched major contacts.
期刊介绍:
Journal of Chemical Crystallography is an international and interdisciplinary publication dedicated to the rapid dissemination of research results in the general areas of crystallography and spectroscopy. Timely research reports detail topics in crystal chemistry and physics and their relation to problems of molecular structure; structural studies of solids, liquids, gases, and solutions involving spectroscopic, spectrometric, X-ray, and electron and neutron diffraction; and theoretical studies.