美国新墨西哥州Abo Arroyo晚第四纪河流环境:对千年气候变化的响应

IF 2 4区 地球科学 Q1 GEOLOGY
S. Hall
{"title":"美国新墨西哥州Abo Arroyo晚第四纪河流环境:对千年气候变化的响应","authors":"S. Hall","doi":"10.2110/jsr.2022.099","DOIUrl":null,"url":null,"abstract":"\n Abo Arroyo is a tributary of the Rio Grande in central New Mexico. Its alluvial sequence is made up of four informal units, their age defined by 44 AMS radiocarbon dates from 12.8 ka to 0.85 ka. The earliest, unit 1, is terminal Pleistocene to early Holocene (12.8 ka to 9.0 ka), including the Scholle wet meadow (12.3 ka to 11.1 ka) related to the Younger Dryas. After an erosional gap in the record from 9 ka to 6 ka, coarse gravel (unit 2) was deposited in the channel (5.8 ka and 4.3 ka) during the middle Holocene period of aridity. Subsequently, the late Holocene wet period is characterized by fine-textured alluvium (unit 3) (3.5 ka to 0.945 ka) with shells of an aquatic snail, indicating persistent stream flow. An upper 2-m zone of dark-colored clayey silt beds with high amounts of organic carbon and carbonate accumulated from 1.7 ka to 0.945 ka. A record of C4 signatures, previously interpreted to indicate dry conditions 1.4 ka to 0.945 ka, is reinterpreted as an interval of exceptionally wet floodplain conditions with C4 grasses and sedges. Abo Arroyo and other studies indicate three major episodes of late-Quaternary channel entrenchment: 1) from the full-glacial to late glacial-Bølling/Allerød (6.1 ky), 2) during the middle Holocene (2.5 ky), and 3) during the late Holocene Medieval Warm Period (0.4 ky), each erosional event less severe and shorter duration than the preceding one, and all three represent a significant change from wet to dry climate. During the Medieval Warm Period (A.D. 900 to 1300), a shallow channel formed in unit 3 alluvium, bracketed by AMS dates A.D. 1005 in unit 3 alluvium and A. D. 1100 in unit 4 channel fill. The channel cutting occurred with the shift from wet to dry climate, although the downcutting event was preceded by 100 years of landscape adjustment to the long drought. The canyon fill was entrenched again, deep and wide, by arroyo cutting in the late nineteenth and early twentieth centuries. The regional 83-year second-century drought (A.D. 100 to A.D. 182), documented by tree rings, shows up in the stable-carbon-isotope record from Abo Arroyo alluvium. The drought was more severe than the 400-year warm period but had little effect on the preserved alluvial record. The less severe but longer-duration Medieval Warm Period resulted in channel cutting at Abo Arroyo and elsewhere in the broad region at that time, but the second-century drought did not. Finally, the similarity of Abo Arroyo and Rio Grande late Holocene alluvial records with parallel stratigraphy, sedimentology, and geochronology illustrates that tributaries and main valleys respond alike and in concert to climate and climate change.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Quaternary fluvial environments at Abo Arroyo, New Mexico, U.S.A.: response to millennial-scale climate change\",\"authors\":\"S. Hall\",\"doi\":\"10.2110/jsr.2022.099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Abo Arroyo is a tributary of the Rio Grande in central New Mexico. Its alluvial sequence is made up of four informal units, their age defined by 44 AMS radiocarbon dates from 12.8 ka to 0.85 ka. The earliest, unit 1, is terminal Pleistocene to early Holocene (12.8 ka to 9.0 ka), including the Scholle wet meadow (12.3 ka to 11.1 ka) related to the Younger Dryas. After an erosional gap in the record from 9 ka to 6 ka, coarse gravel (unit 2) was deposited in the channel (5.8 ka and 4.3 ka) during the middle Holocene period of aridity. Subsequently, the late Holocene wet period is characterized by fine-textured alluvium (unit 3) (3.5 ka to 0.945 ka) with shells of an aquatic snail, indicating persistent stream flow. An upper 2-m zone of dark-colored clayey silt beds with high amounts of organic carbon and carbonate accumulated from 1.7 ka to 0.945 ka. A record of C4 signatures, previously interpreted to indicate dry conditions 1.4 ka to 0.945 ka, is reinterpreted as an interval of exceptionally wet floodplain conditions with C4 grasses and sedges. Abo Arroyo and other studies indicate three major episodes of late-Quaternary channel entrenchment: 1) from the full-glacial to late glacial-Bølling/Allerød (6.1 ky), 2) during the middle Holocene (2.5 ky), and 3) during the late Holocene Medieval Warm Period (0.4 ky), each erosional event less severe and shorter duration than the preceding one, and all three represent a significant change from wet to dry climate. During the Medieval Warm Period (A.D. 900 to 1300), a shallow channel formed in unit 3 alluvium, bracketed by AMS dates A.D. 1005 in unit 3 alluvium and A. D. 1100 in unit 4 channel fill. The channel cutting occurred with the shift from wet to dry climate, although the downcutting event was preceded by 100 years of landscape adjustment to the long drought. The canyon fill was entrenched again, deep and wide, by arroyo cutting in the late nineteenth and early twentieth centuries. The regional 83-year second-century drought (A.D. 100 to A.D. 182), documented by tree rings, shows up in the stable-carbon-isotope record from Abo Arroyo alluvium. The drought was more severe than the 400-year warm period but had little effect on the preserved alluvial record. The less severe but longer-duration Medieval Warm Period resulted in channel cutting at Abo Arroyo and elsewhere in the broad region at that time, but the second-century drought did not. Finally, the similarity of Abo Arroyo and Rio Grande late Holocene alluvial records with parallel stratigraphy, sedimentology, and geochronology illustrates that tributaries and main valleys respond alike and in concert to climate and climate change.\",\"PeriodicalId\":17044,\"journal\":{\"name\":\"Journal of Sedimentary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sedimentary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2110/jsr.2022.099\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2022.099","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿波阿罗约是新墨西哥州中部格兰德河的一条支流。其冲积序列由四个非正式单元组成,它们的年龄由44 AMS放射性碳确定,从12.8 ka到0.85 ka。最早的第一单元是更新世末期至全新世早期(12.8 ka至9.0 ka),包括与年轻旱地有关的Scholel湿草地(12.3 ka至11.1 ka)。在记录中9 ka至6 ka的侵蚀间隙之后,在全新世干旱中期,粗砾石(第二单元)沉积在河道中(5.8 ka和4.3 ka)。随后,全新世晚期湿润期的特征是细纹理冲积层(第三单元)(3.5 ka至0.945 ka),带有水生蜗牛壳,表明河流持续流动。上部2米的深色粘质粉土层,含有大量的有机碳和碳酸盐,堆积范围为1.7ka至0.945ka。C4特征的记录,以前被解释为指示1.4 ka至0.945 ka的干燥条件,被重新解释为具有C4草和莎草的异常潮湿的泛滥平原条件的区间。Abo-Arroyo和其他研究表明,晚第四纪河道形成有三个主要阶段:1)从全冰川到晚冰川的Bølling/Allerød(6.1 ky),2)全新世中期(2.5 ky),3)全新世晚期中世纪温暖期(0.4 ky),每一次侵蚀事件都比前一次严重,持续时间更短,这三种气候都代表着从潮湿到干燥的气候的显著变化。在中世纪温暖期(公元900年至1300年),第三单元冲积层中形成了一条浅沟道,由AMS包围,日期为第三单元冲积层公元1005年,第四单元沟道填料公元1100年。河道切割是随着气候从湿润向干燥的转变而发生的,尽管在向下切割事件之前,对长期干旱进行了100年的景观调整。19世纪末和20世纪初,阿罗约切割再次形成了又深又宽的峡谷填充物。通过树木年轮记录的第二世纪83年的区域干旱(公元100年至公元182年)显示在Abo Arroyo冲积层的稳定碳同位素记录中。干旱比400年的温暖期更严重,但对保存的冲积层记录几乎没有影响。中世纪温暖期虽然不那么严重,但持续时间更长,导致当时Abo Arroyo和广大地区其他地方的河道被切断,但二世纪的干旱并没有。最后,Abo Arroyo和Rio Grande全新世晚期冲积物记录与平行地层学、沉积学和地质年代学的相似性表明,支流和主要山谷对气候和气候变化的反应相似且一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Late Quaternary fluvial environments at Abo Arroyo, New Mexico, U.S.A.: response to millennial-scale climate change
Abo Arroyo is a tributary of the Rio Grande in central New Mexico. Its alluvial sequence is made up of four informal units, their age defined by 44 AMS radiocarbon dates from 12.8 ka to 0.85 ka. The earliest, unit 1, is terminal Pleistocene to early Holocene (12.8 ka to 9.0 ka), including the Scholle wet meadow (12.3 ka to 11.1 ka) related to the Younger Dryas. After an erosional gap in the record from 9 ka to 6 ka, coarse gravel (unit 2) was deposited in the channel (5.8 ka and 4.3 ka) during the middle Holocene period of aridity. Subsequently, the late Holocene wet period is characterized by fine-textured alluvium (unit 3) (3.5 ka to 0.945 ka) with shells of an aquatic snail, indicating persistent stream flow. An upper 2-m zone of dark-colored clayey silt beds with high amounts of organic carbon and carbonate accumulated from 1.7 ka to 0.945 ka. A record of C4 signatures, previously interpreted to indicate dry conditions 1.4 ka to 0.945 ka, is reinterpreted as an interval of exceptionally wet floodplain conditions with C4 grasses and sedges. Abo Arroyo and other studies indicate three major episodes of late-Quaternary channel entrenchment: 1) from the full-glacial to late glacial-Bølling/Allerød (6.1 ky), 2) during the middle Holocene (2.5 ky), and 3) during the late Holocene Medieval Warm Period (0.4 ky), each erosional event less severe and shorter duration than the preceding one, and all three represent a significant change from wet to dry climate. During the Medieval Warm Period (A.D. 900 to 1300), a shallow channel formed in unit 3 alluvium, bracketed by AMS dates A.D. 1005 in unit 3 alluvium and A. D. 1100 in unit 4 channel fill. The channel cutting occurred with the shift from wet to dry climate, although the downcutting event was preceded by 100 years of landscape adjustment to the long drought. The canyon fill was entrenched again, deep and wide, by arroyo cutting in the late nineteenth and early twentieth centuries. The regional 83-year second-century drought (A.D. 100 to A.D. 182), documented by tree rings, shows up in the stable-carbon-isotope record from Abo Arroyo alluvium. The drought was more severe than the 400-year warm period but had little effect on the preserved alluvial record. The less severe but longer-duration Medieval Warm Period resulted in channel cutting at Abo Arroyo and elsewhere in the broad region at that time, but the second-century drought did not. Finally, the similarity of Abo Arroyo and Rio Grande late Holocene alluvial records with parallel stratigraphy, sedimentology, and geochronology illustrates that tributaries and main valleys respond alike and in concert to climate and climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信