{"title":"利用时变风险规避的随机均值CVaR优化避免动量碰撞","authors":"Xiaoshi Guo, S. Ryan","doi":"10.1080/0013791X.2023.2229620","DOIUrl":null,"url":null,"abstract":"Abstract In occasions called momentum crashes, the usually effective cross-sectional momentum strategy for financial asset allocation produces drastically negative returns. We develop a stochastic mean-risk optimization model featuring CVaR to control the risk, dynamically adjusted CVaR tail probability and objective function weight, and return scenarios generated by hybrid moment-matching. In a 95-year backtest, portfolios rebalanced by our method provide higher returns and lower risk than those rebalanced by a cross-sectional momentum heuristic, while avoiding momentum crashes.","PeriodicalId":49210,"journal":{"name":"Engineering Economist","volume":"68 1","pages":"125 - 152"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avoiding momentum crashes using stochastic mean-CVaR optimization with time-varying risk aversion\",\"authors\":\"Xiaoshi Guo, S. Ryan\",\"doi\":\"10.1080/0013791X.2023.2229620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In occasions called momentum crashes, the usually effective cross-sectional momentum strategy for financial asset allocation produces drastically negative returns. We develop a stochastic mean-risk optimization model featuring CVaR to control the risk, dynamically adjusted CVaR tail probability and objective function weight, and return scenarios generated by hybrid moment-matching. In a 95-year backtest, portfolios rebalanced by our method provide higher returns and lower risk than those rebalanced by a cross-sectional momentum heuristic, while avoiding momentum crashes.\",\"PeriodicalId\":49210,\"journal\":{\"name\":\"Engineering Economist\",\"volume\":\"68 1\",\"pages\":\"125 - 152\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Economist\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0013791X.2023.2229620\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Economist","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0013791X.2023.2229620","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
Avoiding momentum crashes using stochastic mean-CVaR optimization with time-varying risk aversion
Abstract In occasions called momentum crashes, the usually effective cross-sectional momentum strategy for financial asset allocation produces drastically negative returns. We develop a stochastic mean-risk optimization model featuring CVaR to control the risk, dynamically adjusted CVaR tail probability and objective function weight, and return scenarios generated by hybrid moment-matching. In a 95-year backtest, portfolios rebalanced by our method provide higher returns and lower risk than those rebalanced by a cross-sectional momentum heuristic, while avoiding momentum crashes.
Engineering EconomistENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
2.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍:
The Engineering Economist is a refereed journal published jointly by the Engineering Economy Division of the American Society of Engineering Education (ASEE) and the Institute of Industrial and Systems Engineers (IISE). The journal publishes articles, case studies, surveys, and book and software reviews that represent original research, current practice, and teaching involving problems of capital investment.
The journal seeks submissions in a number of areas, including, but not limited to: capital investment analysis, financial risk management, cost estimation and accounting, cost of capital, design economics, economic decision analysis, engineering economy education, research and development, and the analysis of public policy when it is relevant to the economic investment decisions made by engineers and technology managers.