具有警戒级修正饱和发生率和Holling功能ii型处理的SIR模型的稳定性分析

Q2 Mathematics
Shivram Sharma, P. Sharma
{"title":"具有警戒级修正饱和发生率和Holling功能ii型处理的SIR模型的稳定性分析","authors":"Shivram Sharma, P. Sharma","doi":"10.1515/cmb-2022-0145","DOIUrl":null,"url":null,"abstract":"Abstract This study discusses an SIR epidemic model with modified saturated incidence rates and Holling functional type-II therapy. In this study, we take the new alert compartment (A) in the SIR compartment model. Consider the modified non-linear incidence rate from the susceptible to the infected class and the second non-linear incidence rate from the alert to the infected class. Further, we investigate the elementary reproduction number, the equilibrium points of the model, and their stability. We apply manifold theory to discuss bifurcations of the disease-free equilibrium point. This study shows that the infected population decreases with the Holling functional type II treatment rate. It also shows that the number of infected people decreases when the psychological rate increases and the contact rate decreases.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of an SIR model with alert class modified saturated incidence rate and Holling functional type-II treatment\",\"authors\":\"Shivram Sharma, P. Sharma\",\"doi\":\"10.1515/cmb-2022-0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study discusses an SIR epidemic model with modified saturated incidence rates and Holling functional type-II therapy. In this study, we take the new alert compartment (A) in the SIR compartment model. Consider the modified non-linear incidence rate from the susceptible to the infected class and the second non-linear incidence rate from the alert to the infected class. Further, we investigate the elementary reproduction number, the equilibrium points of the model, and their stability. We apply manifold theory to discuss bifurcations of the disease-free equilibrium point. This study shows that the infected population decreases with the Holling functional type II treatment rate. It also shows that the number of infected people decreases when the psychological rate increases and the contact rate decreases.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2022-0145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2022-0145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究讨论了一个修正饱和发病率和Holling功能ii型治疗的SIR流行病模型。在本研究中,我们采用SIR隔室模型中的新警报隔室(A)。考虑从易感人群到感染人群的修正非线性发病率和从警戒人群到感染人群的第二次非线性发病率。进一步研究了模型的初等再现数、平衡点及其稳定性。应用流形理论讨论了无病平衡点的分岔问题。本研究表明,感染人群随着Holling功能II型治疗率的降低而减少。研究还表明,随着心理率的增加和接触率的降低,感染人数也会减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of an SIR model with alert class modified saturated incidence rate and Holling functional type-II treatment
Abstract This study discusses an SIR epidemic model with modified saturated incidence rates and Holling functional type-II therapy. In this study, we take the new alert compartment (A) in the SIR compartment model. Consider the modified non-linear incidence rate from the susceptible to the infected class and the second non-linear incidence rate from the alert to the infected class. Further, we investigate the elementary reproduction number, the equilibrium points of the model, and their stability. We apply manifold theory to discuss bifurcations of the disease-free equilibrium point. This study shows that the infected population decreases with the Holling functional type II treatment rate. It also shows that the number of infected people decreases when the psychological rate increases and the contact rate decreases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信