薄,软,皮肤集成电子实时和无线检测汗液中的尿酸

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Hu, Lan Wang, Jian Li, Yawen Yang, G. Zhao, Yiming Liu, Xingcan Huang, Pengcheng Wu, Binbin Zhang, Yanli Jiao, Mengge Wu, Shengxin Jia, Qiang Zhang, Guoqiang Xu, Rui Shi, Dengfeng Li, Yingchun Li, Zhengchun Peng, Xinge Yu
{"title":"薄,软,皮肤集成电子实时和无线检测汗液中的尿酸","authors":"Yue Hu, Lan Wang, Jian Li, Yawen Yang, G. Zhao, Yiming Liu, Xingcan Huang, Pengcheng Wu, Binbin Zhang, Yanli Jiao, Mengge Wu, Shengxin Jia, Qiang Zhang, Guoqiang Xu, Rui Shi, Dengfeng Li, Yingchun Li, Zhengchun Peng, Xinge Yu","doi":"10.1080/19475411.2023.2236997","DOIUrl":null,"url":null,"abstract":"ABSTRACT Wearable sweat sensors are gaining significant attention due to their unparalleled potential for noninvasive health monitoring. Sweat, as a kind of body fluid, contains informative physiological indicators that are related to personalized health status. Advances in wearable sweat sampling and routing technologies, flexible, and stretchable materials, and wireless digital technologies have led to the development of integrated sweat sensors that are comfortable, flexible, light, and intelligent. Herein, we report a flexible and integrated wearable device via incorporating a microfluidic system and a sensing chip with skin-integrated electronic format toward in-situ monitoring of uric acid (UA) in sweat that associates with gout, cardiovascular, and renal diseases. The microfluidic system validly realizes the real-time capture perspiration from human skin. The obtained detection range is 5–200 μM and the detection limit is 1.79 μM, which offers an importance diagnostic method for clinical relevant lab test. The soft and flexible features of the constructed device allows it to be mounted onto nearly anywhere on the body. We tested the sweat UA in diverse subjects and various body locations during exercise, and similar trends were also observed by using a commercial UA assay kit. undefined","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat\",\"authors\":\"Yue Hu, Lan Wang, Jian Li, Yawen Yang, G. Zhao, Yiming Liu, Xingcan Huang, Pengcheng Wu, Binbin Zhang, Yanli Jiao, Mengge Wu, Shengxin Jia, Qiang Zhang, Guoqiang Xu, Rui Shi, Dengfeng Li, Yingchun Li, Zhengchun Peng, Xinge Yu\",\"doi\":\"10.1080/19475411.2023.2236997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Wearable sweat sensors are gaining significant attention due to their unparalleled potential for noninvasive health monitoring. Sweat, as a kind of body fluid, contains informative physiological indicators that are related to personalized health status. Advances in wearable sweat sampling and routing technologies, flexible, and stretchable materials, and wireless digital technologies have led to the development of integrated sweat sensors that are comfortable, flexible, light, and intelligent. Herein, we report a flexible and integrated wearable device via incorporating a microfluidic system and a sensing chip with skin-integrated electronic format toward in-situ monitoring of uric acid (UA) in sweat that associates with gout, cardiovascular, and renal diseases. The microfluidic system validly realizes the real-time capture perspiration from human skin. The obtained detection range is 5–200 μM and the detection limit is 1.79 μM, which offers an importance diagnostic method for clinical relevant lab test. The soft and flexible features of the constructed device allows it to be mounted onto nearly anywhere on the body. We tested the sweat UA in diverse subjects and various body locations during exercise, and similar trends were also observed by using a commercial UA assay kit. undefined\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2023.2236997\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2236997","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat
ABSTRACT Wearable sweat sensors are gaining significant attention due to their unparalleled potential for noninvasive health monitoring. Sweat, as a kind of body fluid, contains informative physiological indicators that are related to personalized health status. Advances in wearable sweat sampling and routing technologies, flexible, and stretchable materials, and wireless digital technologies have led to the development of integrated sweat sensors that are comfortable, flexible, light, and intelligent. Herein, we report a flexible and integrated wearable device via incorporating a microfluidic system and a sensing chip with skin-integrated electronic format toward in-situ monitoring of uric acid (UA) in sweat that associates with gout, cardiovascular, and renal diseases. The microfluidic system validly realizes the real-time capture perspiration from human skin. The obtained detection range is 5–200 μM and the detection limit is 1.79 μM, which offers an importance diagnostic method for clinical relevant lab test. The soft and flexible features of the constructed device allows it to be mounted onto nearly anywhere on the body. We tested the sweat UA in diverse subjects and various body locations during exercise, and similar trends were also observed by using a commercial UA assay kit. undefined
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信