适用于矢量场的坐标III:实分析性

IF 0.5 4区 数学 Q3 MATHEMATICS
B. Street
{"title":"适用于矢量场的坐标III:实分析性","authors":"B. Street","doi":"10.4310/ajm.2020.v24.n6.a5","DOIUrl":null,"url":null,"abstract":"Given a finite collection of $C^1$ vector fields on a $C^2$ manifold which span the tangent space at every point, we consider the question of when there is locally a coordinate system in which these vector fields are real analytic. We give necessary and sufficient, coordinate-free conditions for the existence of such a coordinate system. Moreover, we present a quantitative study of these coordinate charts. This is the third part in a three-part series of papers. The first part, joint with Stovall, lay the groundwork for the coordinate system we use in this paper and showed how such coordinate charts can be viewed as scaling maps for sub-Riemannian geometry. The second part dealt with the analogous questions with real analytic replaced by $C^\\infty$ and Zygmund spaces.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Coordinates adapted to vector fields III: Real analyticity\",\"authors\":\"B. Street\",\"doi\":\"10.4310/ajm.2020.v24.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a finite collection of $C^1$ vector fields on a $C^2$ manifold which span the tangent space at every point, we consider the question of when there is locally a coordinate system in which these vector fields are real analytic. We give necessary and sufficient, coordinate-free conditions for the existence of such a coordinate system. Moreover, we present a quantitative study of these coordinate charts. This is the third part in a three-part series of papers. The first part, joint with Stovall, lay the groundwork for the coordinate system we use in this paper and showed how such coordinate charts can be viewed as scaling maps for sub-Riemannian geometry. The second part dealt with the analogous questions with real analytic replaced by $C^\\\\infty$ and Zygmund spaces.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2020.v24.n6.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2020.v24.n6.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

给定$C^2$流形上的$C^1$向量场的有限集合,这些向量场在每个点都跨越切线空间,我们考虑何时局部存在一个坐标系,其中这些向量场是实解析的问题。我们给出了这样一个坐标系存在的充分必要的无坐标条件。此外,我们还对这些坐标图进行了定量研究。这是由三部分组成的系列论文的第三部分。第一部分,与Stovall一起,为我们在本文中使用的坐标系奠定了基础,并展示了如何将这些坐标图视为亚黎曼几何的比例图。第二部分讨论了用$C^\infty$和Zygmund空间代替实解析的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinates adapted to vector fields III: Real analyticity
Given a finite collection of $C^1$ vector fields on a $C^2$ manifold which span the tangent space at every point, we consider the question of when there is locally a coordinate system in which these vector fields are real analytic. We give necessary and sufficient, coordinate-free conditions for the existence of such a coordinate system. Moreover, we present a quantitative study of these coordinate charts. This is the third part in a three-part series of papers. The first part, joint with Stovall, lay the groundwork for the coordinate system we use in this paper and showed how such coordinate charts can be viewed as scaling maps for sub-Riemannian geometry. The second part dealt with the analogous questions with real analytic replaced by $C^\infty$ and Zygmund spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信