随机Ising转移矩阵乘积的Lyapunov指数:平衡无序情形

Pub Date : 2021-04-30 DOI:10.30757/ALEA.v19-27
G. Giacomin, R. L. Greenblatt
{"title":"随机Ising转移矩阵乘积的Lyapunov指数:平衡无序情形","authors":"G. Giacomin, R. L. Greenblatt","doi":"10.30757/ALEA.v19-27","DOIUrl":null,"url":null,"abstract":"We analyze the top Lyapunov exponent of the product of sequences of two by two matrices that appears in the analysis of several statistical mechanics models with disorder: for example these matrices are the transfer matrices for the nearest neighbor Ising chain with random external field, and the free energy density of this Ising chain is the Lyapunov exponent we consider. We obtain the sharp behavior of this exponent in the large interaction limit when the external field is centered: this balanced case turns out to be critical in many respects. From a mathematical standpoint we precisely identify the behavior of the top Lyapunov exponent of a product of two dimensional random matrices close to a diagonal random matrix for which top and bottom Lyapunov exponents coincide. In particular, the Lyapunov exponent is only $\\log$-H\\\"older continuous.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lyapunov exponent for products of random Ising transfer matrices: the balanced disorder case\",\"authors\":\"G. Giacomin, R. L. Greenblatt\",\"doi\":\"10.30757/ALEA.v19-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the top Lyapunov exponent of the product of sequences of two by two matrices that appears in the analysis of several statistical mechanics models with disorder: for example these matrices are the transfer matrices for the nearest neighbor Ising chain with random external field, and the free energy density of this Ising chain is the Lyapunov exponent we consider. We obtain the sharp behavior of this exponent in the large interaction limit when the external field is centered: this balanced case turns out to be critical in many respects. From a mathematical standpoint we precisely identify the behavior of the top Lyapunov exponent of a product of two dimensional random matrices close to a diagonal random matrix for which top and bottom Lyapunov exponents coincide. In particular, the Lyapunov exponent is only $\\\\log$-H\\\\\\\"older continuous.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.v19-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v19-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们分析了几种无序统计力学模型分析中出现的2 × 2矩阵序列乘积的上李雅普诺夫指数:例如,这些矩阵是具有随机外场的最近邻伊辛链的传递矩阵,而这个伊辛链的自由能密度就是我们所考虑的李雅普诺夫指数。当外场为中心时,我们得到了该指数在大相互作用极限下的尖锐行为:这种平衡情况在许多方面都是至关重要的。从数学的角度,我们精确地确定了一个接近于上下李雅普诺夫指数重合的对角随机矩阵的二维随机矩阵的乘积的上李雅普诺夫指数的行为。特别是,李雅普诺夫指数只是\ log - h \“老美元连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Lyapunov exponent for products of random Ising transfer matrices: the balanced disorder case
We analyze the top Lyapunov exponent of the product of sequences of two by two matrices that appears in the analysis of several statistical mechanics models with disorder: for example these matrices are the transfer matrices for the nearest neighbor Ising chain with random external field, and the free energy density of this Ising chain is the Lyapunov exponent we consider. We obtain the sharp behavior of this exponent in the large interaction limit when the external field is centered: this balanced case turns out to be critical in many respects. From a mathematical standpoint we precisely identify the behavior of the top Lyapunov exponent of a product of two dimensional random matrices close to a diagonal random matrix for which top and bottom Lyapunov exponents coincide. In particular, the Lyapunov exponent is only $\log$-H\"older continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信