关于$\mathbb{R}^{N}中的Kirchhoff型方程$

IF 1.5 3区 数学 Q1 MATHEMATICS
Juntao Sun, Tsung‐fang Wu
{"title":"关于$\\mathbb{R}^{N}中的Kirchhoff型方程$","authors":"Juntao Sun, Tsung‐fang Wu","doi":"10.57262/ade027-0304-97","DOIUrl":null,"url":null,"abstract":"Consider a nonlinear Kirchhoff type equation as follows \\begin{equation*} \\left\\{ \\begin{array}{ll} -\\left( a\\int_{\\mathbb{R}^{N}}|\\nabla u|^{2}dx+b\\right) \\Delta u+u=f(x)\\left\\vert u\\right\\vert ^{p-2}u & \\text{ in }\\mathbb{R}^{N}, \\\\ u\\in H^{1}(\\mathbb{R}^{N}), & \\end{array}% \\right. \\end{equation*}% where $N\\geq 1,a,b>0,2<p<\\min \\left\\{ 4,2^{\\ast }\\right\\}$($2^{\\ast }=\\infty $ for $N=1,2$ and $2^{\\ast }=2N/(N-2)$ for $N\\geq 3)$ and the function $f\\in C(\\mathbb{R}^{N})\\cap L^{\\infty }(\\mathbb{R}^{N})$. Distinguishing from the existing results in the literature, we are more interested in the geometric properties of the energy functional related to the above problem. Furthermore, the nonexistence, existence, unique and multiplicity of positive solutions are proved dependent on the parameter $a$ and the dimension $N.$ In particular, we conclude that a unique positive solution exists for $1\\leq N\\leq4$ while at least two positive solutions are permitted for $N\\geq5$.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kirchhoff type equations in $\\\\mathbb{R}^{N}$\",\"authors\":\"Juntao Sun, Tsung‐fang Wu\",\"doi\":\"10.57262/ade027-0304-97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a nonlinear Kirchhoff type equation as follows \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{ll} -\\\\left( a\\\\int_{\\\\mathbb{R}^{N}}|\\\\nabla u|^{2}dx+b\\\\right) \\\\Delta u+u=f(x)\\\\left\\\\vert u\\\\right\\\\vert ^{p-2}u & \\\\text{ in }\\\\mathbb{R}^{N}, \\\\\\\\ u\\\\in H^{1}(\\\\mathbb{R}^{N}), & \\\\end{array}% \\\\right. \\\\end{equation*}% where $N\\\\geq 1,a,b>0,2<p<\\\\min \\\\left\\\\{ 4,2^{\\\\ast }\\\\right\\\\}$($2^{\\\\ast }=\\\\infty $ for $N=1,2$ and $2^{\\\\ast }=2N/(N-2)$ for $N\\\\geq 3)$ and the function $f\\\\in C(\\\\mathbb{R}^{N})\\\\cap L^{\\\\infty }(\\\\mathbb{R}^{N})$. Distinguishing from the existing results in the literature, we are more interested in the geometric properties of the energy functional related to the above problem. Furthermore, the nonexistence, existence, unique and multiplicity of positive solutions are proved dependent on the parameter $a$ and the dimension $N.$ In particular, we conclude that a unique positive solution exists for $1\\\\leq N\\\\leq4$ while at least two positive solutions are permitted for $N\\\\geq5$.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade027-0304-97\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-0304-97","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑如下的非线性Kirchhoff型方程\begin{equation*} \\ begin{array}{ll} -\left(a\int_{\mathbb{R}^{N}}|\nabla u|^{2}dx+b\right) \Delta u+u=f(x)\left\vert u\right\vert ^{p-2}u & \text{in}\mathbb{R}^{N}, \\ u\in H^{1}(\mathbb{R}^{N}), & \end{array}% \right。结束\{方程*}% N \组的1美元,a, b > 0,剩下2 < p < \敏\ \ {4,2 ^ {\ ast} \右\}美元($ 2 ^ {\ ast} = \ infty为N = 1美元2 $和$ ^ {\ ast} = 2 N / (N - 2)对N \组3美元)和函数f \美元在C (\ mathbb {R} ^ {N}) \帽L ^ {\ infty} (\ mathbb {R} ^ {N})美元。区别于已有的文献结果,我们更感兴趣的是与上述问题相关的能量泛函的几何性质。进一步证明了正解的不存在性、存在性、唯一性和多重性依赖于参数a和维数N。特别地,我们得出$1\leq N\leq4$存在一个唯一正解,而$N\geq5$允许至少两个正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Kirchhoff type equations in $\mathbb{R}^{N}$
Consider a nonlinear Kirchhoff type equation as follows \begin{equation*} \left\{ \begin{array}{ll} -\left( a\int_{\mathbb{R}^{N}}|\nabla u|^{2}dx+b\right) \Delta u+u=f(x)\left\vert u\right\vert ^{p-2}u & \text{ in }\mathbb{R}^{N}, \\ u\in H^{1}(\mathbb{R}^{N}), & \end{array}% \right. \end{equation*}% where $N\geq 1,a,b>0,2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信