齐次性二中的几乎非负曲率和有理椭圆性

Pub Date : 2020-06-26 DOI:10.5802/aif.3340
K. Grove, Burkhard Wilking, Joseph E. Yeager
{"title":"齐次性二中的几乎非负曲率和有理椭圆性","authors":"K. Grove, Burkhard Wilking, Joseph E. Yeager","doi":"10.5802/aif.3340","DOIUrl":null,"url":null,"abstract":"— An extension of a fundamental conjecture by R. Bott suggests that all simply connected closed almost non-negatively curved manifolds M are rationally elliptic, i.e., all but finitely many homotopy groups of such M are finite. We confirm this conjecture when in addition M supports an isometric action with orbits of codimension at most two. Our proof uses the geometry of the orbit space to control the topology of the homotopy fiber of the inclusion map of an orbit in M , and is applicable to more general contexts. Résumé. — D’après une extension d’une conjecture fondamentale de R. Bott, toute variété compacte (sans bord) simplement connexe M à courbure positive est rationellement elliptique, i.e., seul un nombre fini de groupes d’homotopie de M sont infinis. On montre cette conjecture dans le cas où M admet une action par isométries dont l’orbite principale a codimension au plus est de deux. Notre preuve utilise la géométrie de l’espace quotient pour contrôler la topologie de la fibre homotopique de l’inclusion d’une orbite dans M , et s’applique à des contextes plus généraux.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Almost non-negative curvature and rational ellipticity in cohomogeneity two\",\"authors\":\"K. Grove, Burkhard Wilking, Joseph E. Yeager\",\"doi\":\"10.5802/aif.3340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— An extension of a fundamental conjecture by R. Bott suggests that all simply connected closed almost non-negatively curved manifolds M are rationally elliptic, i.e., all but finitely many homotopy groups of such M are finite. We confirm this conjecture when in addition M supports an isometric action with orbits of codimension at most two. Our proof uses the geometry of the orbit space to control the topology of the homotopy fiber of the inclusion map of an orbit in M , and is applicable to more general contexts. Résumé. — D’après une extension d’une conjecture fondamentale de R. Bott, toute variété compacte (sans bord) simplement connexe M à courbure positive est rationellement elliptique, i.e., seul un nombre fini de groupes d’homotopie de M sont infinis. On montre cette conjecture dans le cas où M admet une action par isométries dont l’orbite principale a codimension au plus est de deux. Notre preuve utilise la géométrie de l’espace quotient pour contrôler la topologie de la fibre homotopique de l’inclusion d’une orbite dans M , et s’applique à des contextes plus généraux.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

-R.Bott基本猜想的扩展表明,所有简单连接的闭合几乎非负曲线歧管m都是有理椭圆的,即,这些m的所有但有限多的同伦群都是有限的。当加法M支持具有最多两个共维轨道的等距作用时,我们证实了这个猜想。我们的证明使用轨道空间的几何结构来控制M中轨道包含图同伦纤维的拓扑结构,并适用于更一般的情况。摘要-根据R.Bott基本猜想的扩展,任何简单连接的正曲率紧(无边)流形M都是合理椭圆的,即只有有限数量的M同伦群是无限的。在M允许主轨道共维不超过2的等距作用的情况下,这一猜想得到了证明。我们的证明使用商空间几何来控制M中包含轨道的同伦光纤拓扑,并适用于更一般的上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Almost non-negative curvature and rational ellipticity in cohomogeneity two
— An extension of a fundamental conjecture by R. Bott suggests that all simply connected closed almost non-negatively curved manifolds M are rationally elliptic, i.e., all but finitely many homotopy groups of such M are finite. We confirm this conjecture when in addition M supports an isometric action with orbits of codimension at most two. Our proof uses the geometry of the orbit space to control the topology of the homotopy fiber of the inclusion map of an orbit in M , and is applicable to more general contexts. Résumé. — D’après une extension d’une conjecture fondamentale de R. Bott, toute variété compacte (sans bord) simplement connexe M à courbure positive est rationellement elliptique, i.e., seul un nombre fini de groupes d’homotopie de M sont infinis. On montre cette conjecture dans le cas où M admet une action par isométries dont l’orbite principale a codimension au plus est de deux. Notre preuve utilise la géométrie de l’espace quotient pour contrôler la topologie de la fibre homotopique de l’inclusion d’une orbite dans M , et s’applique à des contextes plus généraux.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信