Jinpeng Hao , Xiuguang Li , Hong Wu , Kai Yang , Yumeng Zeng , Yu Wang , Yuanjin Pan
{"title":"基于光学遥感和激光雷达的高压输电在线走廊树冠高度信息提取与分析","authors":"Jinpeng Hao , Xiuguang Li , Hong Wu , Kai Yang , Yumeng Zeng , Yu Wang , Yuanjin Pan","doi":"10.1016/j.geog.2022.11.008","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional inspection methods cannot quickly and accurately monitor tree barriers and safeguard the transmission lines. To solve these problems, in this study, we proposed a rapid canopy height information extraction method using optical remote sensing and LiDAR, and used UAV optical imagery with LiDAR to monitor the height of trees in a university and a high-voltage transmission line corridor in the Ningxia region. The results showed that the relative error of tree height extraction using UAV optical images was less than 5%, and the lowest relative error was 0.11%. The determination coefficient <em>R</em><sup>2</sup> between the optical image tree height extraction results and the measured tree height was 0.97, thus indicating a high correlation for both. In the field of tree barrier monitoring, the determination coefficient <em>R</em><sup>2</sup> of tree height extracted using airborne LiDAR point cloud, and canopy height model (CHM) and of the measured tree height were 0.947 and 0.931, respectively. The maximum and minimum relative error in tree height extraction performed using point cloud was 2.91% and 0.2%, respectively, with an extraction accuracy of over 95%. The experimental results demonstrated that it is feasible to use UAV optical remote sensing and LiDAR in monitoring tree barriers and tree height information extraction quickly and accurately, which is of great significance for the risk assessment and early warning of tree barriers in transmission-line corridors.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extraction and analysis of tree canopy height information in high-voltage transmission-line corridors by using integrated optical remote sensing and LiDAR\",\"authors\":\"Jinpeng Hao , Xiuguang Li , Hong Wu , Kai Yang , Yumeng Zeng , Yu Wang , Yuanjin Pan\",\"doi\":\"10.1016/j.geog.2022.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional inspection methods cannot quickly and accurately monitor tree barriers and safeguard the transmission lines. To solve these problems, in this study, we proposed a rapid canopy height information extraction method using optical remote sensing and LiDAR, and used UAV optical imagery with LiDAR to monitor the height of trees in a university and a high-voltage transmission line corridor in the Ningxia region. The results showed that the relative error of tree height extraction using UAV optical images was less than 5%, and the lowest relative error was 0.11%. The determination coefficient <em>R</em><sup>2</sup> between the optical image tree height extraction results and the measured tree height was 0.97, thus indicating a high correlation for both. In the field of tree barrier monitoring, the determination coefficient <em>R</em><sup>2</sup> of tree height extracted using airborne LiDAR point cloud, and canopy height model (CHM) and of the measured tree height were 0.947 and 0.931, respectively. The maximum and minimum relative error in tree height extraction performed using point cloud was 2.91% and 0.2%, respectively, with an extraction accuracy of over 95%. The experimental results demonstrated that it is feasible to use UAV optical remote sensing and LiDAR in monitoring tree barriers and tree height information extraction quickly and accurately, which is of great significance for the risk assessment and early warning of tree barriers in transmission-line corridors.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984722001069\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984722001069","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Extraction and analysis of tree canopy height information in high-voltage transmission-line corridors by using integrated optical remote sensing and LiDAR
Traditional inspection methods cannot quickly and accurately monitor tree barriers and safeguard the transmission lines. To solve these problems, in this study, we proposed a rapid canopy height information extraction method using optical remote sensing and LiDAR, and used UAV optical imagery with LiDAR to monitor the height of trees in a university and a high-voltage transmission line corridor in the Ningxia region. The results showed that the relative error of tree height extraction using UAV optical images was less than 5%, and the lowest relative error was 0.11%. The determination coefficient R2 between the optical image tree height extraction results and the measured tree height was 0.97, thus indicating a high correlation for both. In the field of tree barrier monitoring, the determination coefficient R2 of tree height extracted using airborne LiDAR point cloud, and canopy height model (CHM) and of the measured tree height were 0.947 and 0.931, respectively. The maximum and minimum relative error in tree height extraction performed using point cloud was 2.91% and 0.2%, respectively, with an extraction accuracy of over 95%. The experimental results demonstrated that it is feasible to use UAV optical remote sensing and LiDAR in monitoring tree barriers and tree height information extraction quickly and accurately, which is of great significance for the risk assessment and early warning of tree barriers in transmission-line corridors.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.