图上循环叶理的根跨越森林计数

IF 0.4 4区 数学 Q4 MATHEMATICS
L. Grunwald, Young Soo Kwon, I. Mednykh
{"title":"图上循环叶理的根跨越森林计数","authors":"L. Grunwald, Young Soo Kwon, I. Mednykh","doi":"10.2748/tmj.20210810","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method to produce explicit formulas for the number of rooted spanning forests f(n) for the infinite family of graphs Hn = Hn(G1, G2, . . . , Gm) obtained as a circulant foliation over a graph H on m vertices with fibersG1, G2, . . . , Gm. Each fiber Gi = Cn(si,1, si,2, . . . , si,ki) of this foliation is the circulant graph on n vertices with jumps si,1, si,2, . . . , si,ki . This family includes the family of generalized Petersen graphs, I-graphs, sandwiches of circulant graphs, discrete torus graphs and others. The formulas are expressed through Chebyshev polynomials. We prove that the number of rooted spanning forests can be represented in the form f(n) = p f(H)a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending on the number of odd elements in the set of si,j. Finally, we find an asymptotic formula for f(n) through the Mahler measure of the associated Laurent polynomial.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Counting rooted spanning forests for circulant foliation over a graph\",\"authors\":\"L. Grunwald, Young Soo Kwon, I. Mednykh\",\"doi\":\"10.2748/tmj.20210810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new method to produce explicit formulas for the number of rooted spanning forests f(n) for the infinite family of graphs Hn = Hn(G1, G2, . . . , Gm) obtained as a circulant foliation over a graph H on m vertices with fibersG1, G2, . . . , Gm. Each fiber Gi = Cn(si,1, si,2, . . . , si,ki) of this foliation is the circulant graph on n vertices with jumps si,1, si,2, . . . , si,ki . This family includes the family of generalized Petersen graphs, I-graphs, sandwiches of circulant graphs, discrete torus graphs and others. The formulas are expressed through Chebyshev polynomials. We prove that the number of rooted spanning forests can be represented in the form f(n) = p f(H)a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending on the number of odd elements in the set of si,j. Finally, we find an asymptotic formula for f(n) through the Mahler measure of the associated Laurent polynomial.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20210810\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210810","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种新的方法来产生无限族图Hn=Hn(G1,G2,…,Gm)的根生成林数f(n)的显式公式,该无限族图是在具有纤维G1,G2,Gm。该叶理的每个纤维Gi=Cn(si,1,si,2,…,si,ki)是n个顶点上的循环图,具有跳跃si,1、si,2,si,ki。该族包括广义Petersen图族、I-图族、循环图三明治族、离散环面图族等。这些公式是用切比雪夫多项式表示的。我们证明了有根生成林的数量可以用f(n)=pf(H)a(n)2的形式表示,其中a(n)是一个整数序列,p是一个规定的自然数,取决于si,j集合中奇数元素的数量。最后,通过关联Laurent多项式的Mahler测度,我们找到了f(n)的一个渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting rooted spanning forests for circulant foliation over a graph
In this paper, we present a new method to produce explicit formulas for the number of rooted spanning forests f(n) for the infinite family of graphs Hn = Hn(G1, G2, . . . , Gm) obtained as a circulant foliation over a graph H on m vertices with fibersG1, G2, . . . , Gm. Each fiber Gi = Cn(si,1, si,2, . . . , si,ki) of this foliation is the circulant graph on n vertices with jumps si,1, si,2, . . . , si,ki . This family includes the family of generalized Petersen graphs, I-graphs, sandwiches of circulant graphs, discrete torus graphs and others. The formulas are expressed through Chebyshev polynomials. We prove that the number of rooted spanning forests can be represented in the form f(n) = p f(H)a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending on the number of odd elements in the set of si,j. Finally, we find an asymptotic formula for f(n) through the Mahler measure of the associated Laurent polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信