线性四元数值微分方程的Hyers-Ulam稳定性

IF 0.8 4区 数学 Q2 MATHEMATICS
Jiaojiao Lv, Jinrong Wang, R. Liu
{"title":"线性四元数值微分方程的Hyers-Ulam稳定性","authors":"Jiaojiao Lv, Jinrong Wang, R. Liu","doi":"10.58997/ejde.2023.21","DOIUrl":null,"url":null,"abstract":"In this article, we study the Hyers-Ulam stability of the first-order linear quaternion-valued differential equations. We transfer a linear quaternion-valued differential equation into a real differential system. The Hyers-Ulam stability results for the linear quaternion-valued differential equations are obtained according to the equivalent relationship between the vector 2-norm and the quaternion module.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyers-Ulam stability of linear quaternion-valued differential equations\",\"authors\":\"Jiaojiao Lv, Jinrong Wang, R. Liu\",\"doi\":\"10.58997/ejde.2023.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the Hyers-Ulam stability of the first-order linear quaternion-valued differential equations. We transfer a linear quaternion-valued differential equation into a real differential system. The Hyers-Ulam stability results for the linear quaternion-valued differential equations are obtained according to the equivalent relationship between the vector 2-norm and the quaternion module.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.21\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一类一阶线性四元数微分方程的Hyers-Ulam稳定性。我们将线性四元数微分方程转化为实微分系统。根据向量2-范数与四元数模的等价关系,得到了线性四元数微分方程的Hyers-Ulam稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyers-Ulam stability of linear quaternion-valued differential equations
In this article, we study the Hyers-Ulam stability of the first-order linear quaternion-valued differential equations. We transfer a linear quaternion-valued differential equation into a real differential system. The Hyers-Ulam stability results for the linear quaternion-valued differential equations are obtained according to the equivalent relationship between the vector 2-norm and the quaternion module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信