具有次线性非线性的临界阻尼Schrödinger方程的有限时间消光

IF 1.5 3区 数学 Q1 MATHEMATICS
Pascal B'egout, Jes'us Ildefonso D'iaz
{"title":"具有次线性非线性的临界阻尼Schrödinger方程的有限时间消光","authors":"Pascal B'egout, Jes'us Ildefonso D'iaz","doi":"10.57262/ade028-0304-311","DOIUrl":null,"url":null,"abstract":"This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schr{\\\"o}dinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\\frac{a}{\\varepsilon+(|u|^2)^\\alpha}u,$ with $a\\in\\mathbb{C},$ $\\varepsilon\\geqslant0,$ $2\\alpha=(1-m)$ and $m\\in[0,1).$ Here we consider the sublinear case $0<m<1$ with a critical damped coefficient: $a\\in\\mathbb{C}$ is assumed to be in the set $D(m)=\\big\\{z\\in\\mathbb{C}; \\; \\mathrm{Im}(z)>0 \\text{ and } 2\\sqrt{m}\\mathrm{Im}(z)=(1-m)\\mathrm{Re}(z)\\big\\}.$ Among other things, we know that this damping coefficient is critical, for instance, in order to obtain the monotonicity of the associated operator (see the paper by Liskevich and Perel'muter [16] and the more recent study by Cialdea and Maz'ya [14]). The finite time extinction of solutions is proved by a suitable energy method after obtaining appropiate a priori estimates. Most of the results apply to non-necessarily bounded spatial domains.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity\",\"authors\":\"Pascal B'egout, Jes'us Ildefonso D'iaz\",\"doi\":\"10.57262/ade028-0304-311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schr{\\\\\\\"o}dinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\\\\frac{a}{\\\\varepsilon+(|u|^2)^\\\\alpha}u,$ with $a\\\\in\\\\mathbb{C},$ $\\\\varepsilon\\\\geqslant0,$ $2\\\\alpha=(1-m)$ and $m\\\\in[0,1).$ Here we consider the sublinear case $0<m<1$ with a critical damped coefficient: $a\\\\in\\\\mathbb{C}$ is assumed to be in the set $D(m)=\\\\big\\\\{z\\\\in\\\\mathbb{C}; \\\\; \\\\mathrm{Im}(z)>0 \\\\text{ and } 2\\\\sqrt{m}\\\\mathrm{Im}(z)=(1-m)\\\\mathrm{Re}(z)\\\\big\\\\}.$ Among other things, we know that this damping coefficient is critical, for instance, in order to obtain the monotonicity of the associated operator (see the paper by Liskevich and Perel'muter [16] and the more recent study by Cialdea and Maz'ya [14]). The finite time extinction of solutions is proved by a suitable energy method after obtaining appropiate a priori estimates. Most of the results apply to non-necessarily bounded spatial domains.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade028-0304-311\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade028-0304-311","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文完成了几位作者以前关于非线性薛定谔方程的有限时间消光的一些研究,当非线性阻尼项对应于一些“饱和非克尔定律”的极限情况时,$F(|u|^2)u=\frac{a}{\varepsilon+(|u| ^2)^\alpha}u,$with$a\in\mathbb{C},$$varepsilon\geqslant0,$$2\alpha=(1-m)$和$m\in[0,1).$在这里,我们考虑次线性情况$00\text{and}2\sqrt{m}\mathrm{Im}(z)=(1-m)\mathrm{Re}(z)\bigh\}。$除其他外,我们知道这个阻尼系数是关键的,例如,为了获得相关算子的单调性(参见Liskevich和Perel'muter[16]的论文以及Cialdea和Maz'ya[14]的最新研究)。在获得近似的先验估计后,用适当的能量方法证明了解的有限时间消光。大多数结果适用于不一定有界的空间域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity
This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schr{\"o}dinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\frac{a}{\varepsilon+(|u|^2)^\alpha}u,$ with $a\in\mathbb{C},$ $\varepsilon\geqslant0,$ $2\alpha=(1-m)$ and $m\in[0,1).$ Here we consider the sublinear case $00 \text{ and } 2\sqrt{m}\mathrm{Im}(z)=(1-m)\mathrm{Re}(z)\big\}.$ Among other things, we know that this damping coefficient is critical, for instance, in order to obtain the monotonicity of the associated operator (see the paper by Liskevich and Perel'muter [16] and the more recent study by Cialdea and Maz'ya [14]). The finite time extinction of solutions is proved by a suitable energy method after obtaining appropiate a priori estimates. Most of the results apply to non-necessarily bounded spatial domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信