{"title":"二阶最小希尔伯特函数生成的子代数","authors":"Lisa Nicklasson","doi":"10.7146/MATH.SCAND.A-122603","DOIUrl":null,"url":null,"abstract":"What can be said about the subalgebras of the polynomial ring, with minimal or maximal Hilbert function? This question was discussed in a recent paper by M. Boij and A. Conca. In this paper we study the subalgebras generated in degree two with minimal Hilbert function. The problem to determine the generators of these algebras transfers into a combinatorial problem on counting maximal north-east lattice paths inside a shifted Ferrers diagram. We conjecture that the subalgebras generated in degree two with minimal Hilbert function are generated by an initial Lex or RevLex segment.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Subalgebras generated in degree two with minimal Hilbert function\",\"authors\":\"Lisa Nicklasson\",\"doi\":\"10.7146/MATH.SCAND.A-122603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What can be said about the subalgebras of the polynomial ring, with minimal or maximal Hilbert function? This question was discussed in a recent paper by M. Boij and A. Conca. In this paper we study the subalgebras generated in degree two with minimal Hilbert function. The problem to determine the generators of these algebras transfers into a combinatorial problem on counting maximal north-east lattice paths inside a shifted Ferrers diagram. We conjecture that the subalgebras generated in degree two with minimal Hilbert function are generated by an initial Lex or RevLex segment.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/MATH.SCAND.A-122603\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-122603","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Subalgebras generated in degree two with minimal Hilbert function
What can be said about the subalgebras of the polynomial ring, with minimal or maximal Hilbert function? This question was discussed in a recent paper by M. Boij and A. Conca. In this paper we study the subalgebras generated in degree two with minimal Hilbert function. The problem to determine the generators of these algebras transfers into a combinatorial problem on counting maximal north-east lattice paths inside a shifted Ferrers diagram. We conjecture that the subalgebras generated in degree two with minimal Hilbert function are generated by an initial Lex or RevLex segment.
期刊介绍:
Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length.
Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months.
All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.