Y. Gonzalez, Leann Tulisiak, M. Philbin, H. Voss, E. Schramm, Irma Ruelas, Calli A. Davison-Versagli
{"title":"消除Sestrin 2对细胞外基质脱离的SKOV3卵巢癌症细胞生存能力的损害","authors":"Y. Gonzalez, Leann Tulisiak, M. Philbin, H. Voss, E. Schramm, Irma Ruelas, Calli A. Davison-Versagli","doi":"10.20455/ROS.2019.861","DOIUrl":null,"url":null,"abstract":"Epithelial ovarian carcinoma (EOC) is considered the deadliest gynecological cancer, largely due to the fact that it is often diagnosed once the cancer has already metastasized, thus making the disease more difficult to treat. Throughout metastasis, ovarian epithelial cancer cells must overcome many feats, including surviving in extracellular matrix (ECM) detachment. ECM-detached cancer cells must evade a number of insults, including increased intracellular reactive oxygen species (ROS). Recent evidence suggests ECM-detached cancer cells rely on antioxidant enzymes to combat these increasing levels of ROS to promote survival; however, the specific antioxidant enzymes involved in this process have yet to be fully elucidated. Sestrin 2 (SESN2) is a multi-functional protein that has been found to be instrumental in many different signaling pathways; notably, it has been recognized to play a critical role in eliminating ROS. Here, we show that SESN2 plays a unique role in maintaining the viability of ECM-detached metastatic ovarian epithelial cancer cells, and elimination of this critical protein results in compromised viability. Thus, these data identify SESN2 as a potentially interesting therapeutic target for treating this deadly metastatic disease.","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination of Sestrin 2 Compromises Viability in Extracellular Matrix-Detached SKOV3 Ovarian Cancer Cells\",\"authors\":\"Y. Gonzalez, Leann Tulisiak, M. Philbin, H. Voss, E. Schramm, Irma Ruelas, Calli A. Davison-Versagli\",\"doi\":\"10.20455/ROS.2019.861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epithelial ovarian carcinoma (EOC) is considered the deadliest gynecological cancer, largely due to the fact that it is often diagnosed once the cancer has already metastasized, thus making the disease more difficult to treat. Throughout metastasis, ovarian epithelial cancer cells must overcome many feats, including surviving in extracellular matrix (ECM) detachment. ECM-detached cancer cells must evade a number of insults, including increased intracellular reactive oxygen species (ROS). Recent evidence suggests ECM-detached cancer cells rely on antioxidant enzymes to combat these increasing levels of ROS to promote survival; however, the specific antioxidant enzymes involved in this process have yet to be fully elucidated. Sestrin 2 (SESN2) is a multi-functional protein that has been found to be instrumental in many different signaling pathways; notably, it has been recognized to play a critical role in eliminating ROS. Here, we show that SESN2 plays a unique role in maintaining the viability of ECM-detached metastatic ovarian epithelial cancer cells, and elimination of this critical protein results in compromised viability. Thus, these data identify SESN2 as a potentially interesting therapeutic target for treating this deadly metastatic disease.\",\"PeriodicalId\":91793,\"journal\":{\"name\":\"Reactive oxygen species (Apex, N.C.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive oxygen species (Apex, N.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20455/ROS.2019.861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive oxygen species (Apex, N.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20455/ROS.2019.861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elimination of Sestrin 2 Compromises Viability in Extracellular Matrix-Detached SKOV3 Ovarian Cancer Cells
Epithelial ovarian carcinoma (EOC) is considered the deadliest gynecological cancer, largely due to the fact that it is often diagnosed once the cancer has already metastasized, thus making the disease more difficult to treat. Throughout metastasis, ovarian epithelial cancer cells must overcome many feats, including surviving in extracellular matrix (ECM) detachment. ECM-detached cancer cells must evade a number of insults, including increased intracellular reactive oxygen species (ROS). Recent evidence suggests ECM-detached cancer cells rely on antioxidant enzymes to combat these increasing levels of ROS to promote survival; however, the specific antioxidant enzymes involved in this process have yet to be fully elucidated. Sestrin 2 (SESN2) is a multi-functional protein that has been found to be instrumental in many different signaling pathways; notably, it has been recognized to play a critical role in eliminating ROS. Here, we show that SESN2 plays a unique role in maintaining the viability of ECM-detached metastatic ovarian epithelial cancer cells, and elimination of this critical protein results in compromised viability. Thus, these data identify SESN2 as a potentially interesting therapeutic target for treating this deadly metastatic disease.