基于深度强化学习的四旋翼运动控制

IF 1.3 Q3 REMOTE SENSING
Zifei Jiang, Alan Francis Lynch
{"title":"基于深度强化学习的四旋翼运动控制","authors":"Zifei Jiang, Alan Francis Lynch","doi":"10.1139/juvs-2021-0010","DOIUrl":null,"url":null,"abstract":"We present a deep neural net-based controller trained by a model-free reinforcement learning (RL) algorithm to achieve hover stabilization for a quadrotor unmanned aerial vehicle (UAV). With RL, two neural nets are trained. One neural net is used as a stochastic controller which gives the distribution of control inputs. The other maps the UAV state to a scalar which estimates the reward of the controller. A proximal policy optimization (PPO) method, which is an actor-critic policy gradient approach, is used to train the neural nets. Simulation results show that the trained controller achieves a comparable level of performance to a manually-tuned PID controller, despite not depending on any model information. The paper considers different choices of reward function and their influence on controller performance.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quadrotor Motion Control Using Deep Reinforcement Learning\",\"authors\":\"Zifei Jiang, Alan Francis Lynch\",\"doi\":\"10.1139/juvs-2021-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a deep neural net-based controller trained by a model-free reinforcement learning (RL) algorithm to achieve hover stabilization for a quadrotor unmanned aerial vehicle (UAV). With RL, two neural nets are trained. One neural net is used as a stochastic controller which gives the distribution of control inputs. The other maps the UAV state to a scalar which estimates the reward of the controller. A proximal policy optimization (PPO) method, which is an actor-critic policy gradient approach, is used to train the neural nets. Simulation results show that the trained controller achieves a comparable level of performance to a manually-tuned PID controller, despite not depending on any model information. The paper considers different choices of reward function and their influence on controller performance.\",\"PeriodicalId\":45619,\"journal\":{\"name\":\"Journal of Unmanned Vehicle Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unmanned Vehicle Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/juvs-2021-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/juvs-2021-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种通过无模型强化学习(RL)算法训练的基于深度神经网络的控制器,以实现四旋翼无人机的悬停稳定。用RL训练两个神经网络。使用一个神经网络作为随机控制器,给出控制输入的分布。另一种将无人机状态映射到标量,该标量估计控制器的奖励。使用一种近似策略优化(PPO)方法来训练神经网络,该方法是一种行动者-评论家策略梯度方法。仿真结果表明,尽管不依赖于任何模型信息,但训练后的控制器实现了与手动调节PID控制器相当的性能水平。本文考虑了奖励函数的不同选择及其对控制器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadrotor Motion Control Using Deep Reinforcement Learning
We present a deep neural net-based controller trained by a model-free reinforcement learning (RL) algorithm to achieve hover stabilization for a quadrotor unmanned aerial vehicle (UAV). With RL, two neural nets are trained. One neural net is used as a stochastic controller which gives the distribution of control inputs. The other maps the UAV state to a scalar which estimates the reward of the controller. A proximal policy optimization (PPO) method, which is an actor-critic policy gradient approach, is used to train the neural nets. Simulation results show that the trained controller achieves a comparable level of performance to a manually-tuned PID controller, despite not depending on any model information. The paper considers different choices of reward function and their influence on controller performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信