基于瑞利分布的不稳定色散环境下NLSE随机解的新结构

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2023-07-19 DOI:10.1007/s12043-023-02591-4
Mahmoud A E Abdelrahman, M A Sohaly, Yousef F Alharbi
{"title":"基于瑞利分布的不稳定色散环境下NLSE随机解的新结构","authors":"Mahmoud A E Abdelrahman,&nbsp;M A Sohaly,&nbsp;Yousef F Alharbi","doi":"10.1007/s12043-023-02591-4","DOIUrl":null,"url":null,"abstract":"<div><p>The unstable nonlinear Schrödinger equation (UNLSE) characterises the time evolution of disturbances through unstable or marginally stable media. We study the stochastic UNLSE and stochastic modified UNLSE (mUNLSE). We apply the unified solver to provide some new stochastic solutions via Rayleigh distribution. The gained stochastic solutions play a crucial role in nonlinear sciences. Rayleigh distribution is used to depict the dispersion random input. In light of description of the behaviour of stochastic solutions, their mean and variance are illustrated. We show the influence of random parameters on the gained stochastic solutions. With the aid of Maple software, various profile pictures are introduced to exhibit the dynamical behaviour of the stochastic solutions.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new structure of stochastic solutions to the NLSE in unstable dispersive environments via Rayleigh distribution\",\"authors\":\"Mahmoud A E Abdelrahman,&nbsp;M A Sohaly,&nbsp;Yousef F Alharbi\",\"doi\":\"10.1007/s12043-023-02591-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unstable nonlinear Schrödinger equation (UNLSE) characterises the time evolution of disturbances through unstable or marginally stable media. We study the stochastic UNLSE and stochastic modified UNLSE (mUNLSE). We apply the unified solver to provide some new stochastic solutions via Rayleigh distribution. The gained stochastic solutions play a crucial role in nonlinear sciences. Rayleigh distribution is used to depict the dispersion random input. In light of description of the behaviour of stochastic solutions, their mean and variance are illustrated. We show the influence of random parameters on the gained stochastic solutions. With the aid of Maple software, various profile pictures are introduced to exhibit the dynamical behaviour of the stochastic solutions.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"97 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-023-02591-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-023-02591-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不稳定非线性Schrödinger方程(UNLSE)描述了扰动在不稳定或微稳定介质中的时间演化。研究了随机UNLSE和随机修正UNLSE (mUNLSE)。应用统一求解器,通过瑞利分布给出了一些新的随机解。得到的随机解在非线性科学中起着至关重要的作用。采用瑞利分布来描述色散随机输入。根据随机解的行为描述,说明了它们的均值和方差。我们展示了随机参数对得到的随机解的影响。在Maple软件的帮助下,引入了各种侧面图来展示随机解的动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new structure of stochastic solutions to the NLSE in unstable dispersive environments via Rayleigh distribution

The unstable nonlinear Schrödinger equation (UNLSE) characterises the time evolution of disturbances through unstable or marginally stable media. We study the stochastic UNLSE and stochastic modified UNLSE (mUNLSE). We apply the unified solver to provide some new stochastic solutions via Rayleigh distribution. The gained stochastic solutions play a crucial role in nonlinear sciences. Rayleigh distribution is used to depict the dispersion random input. In light of description of the behaviour of stochastic solutions, their mean and variance are illustrated. We show the influence of random parameters on the gained stochastic solutions. With the aid of Maple software, various profile pictures are introduced to exhibit the dynamical behaviour of the stochastic solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信