{"title":"自对偶U(1)‐Yang-Mills-Higgs能量收敛到(n−2)$(n-2)$‐面积泛函","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1002/cpa.22150","DOIUrl":null,"url":null,"abstract":"<p>Given a hermitian line bundle <math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>→</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$L\\rightarrow M$</annotation>\n </semantics></math> on a closed Riemannian manifold <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n,g)$</annotation>\n </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\n\n </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the \\n \\n \\n (\\n n\\n −\\n 2\\n )\\n \\n $(n-2)$\\n -area functional\",\"authors\":\"Davide Parise, Alessandro Pigati, Daniel Stern\",\"doi\":\"10.1002/cpa.22150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a hermitian line bundle <math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>→</mo>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$L\\\\rightarrow M$</annotation>\\n </semantics></math> on a closed Riemannian manifold <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>M</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M^n,g)$</annotation>\\n </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\\n\\n </p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22150\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22150","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}