植物基化学外加剂——对胶结材料性能的潜力和影响

Q2 Engineering
W. Schmidt, I. L. Tchetgnia Ngassam, K. Olonade, R. Mbugua, H. Kühne
{"title":"植物基化学外加剂——对胶结材料性能的潜力和影响","authors":"W. Schmidt, I. L. Tchetgnia Ngassam, K. Olonade, R. Mbugua, H. Kühne","doi":"10.21809/RILEMTECHLETT.2018.83","DOIUrl":null,"url":null,"abstract":"While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio-based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil-based. \nThe paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfetta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Plant based chemical admixtures – potentials and effects on the performance of cementitious materials\",\"authors\":\"W. Schmidt, I. L. Tchetgnia Ngassam, K. Olonade, R. Mbugua, H. Kühne\",\"doi\":\"10.21809/RILEMTECHLETT.2018.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio-based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil-based. \\nThe paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfetta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly.\",\"PeriodicalId\":36420,\"journal\":{\"name\":\"RILEM Technical Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RILEM Technical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21809/RILEMTECHLETT.2018.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/RILEMTECHLETT.2018.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10

摘要

虽然今天,工程师可以从各种流变改性外加剂中进行选择,但在世界一些地区,由于加工复杂,这些外加剂很难获得。然而,替代品可以是生物基聚合物,例如来自各种来源的多糖。这些材料在世界各地都很容易获得,不需要复杂的加工,而且通常比许多以原油为基础的既定材料更具可持续性。本文研究了阿拉伯胶、木薯淀粉和三叶草胶对胶凝体系流变性能的影响。研究表明,阿拉伯胶可以与聚羧酸系高效减水剂一样有效,木薯淀粉可以轻微降低屈服应力,但对塑性粘度的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant based chemical admixtures – potentials and effects on the performance of cementitious materials
While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio-based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil-based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfetta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信